Comparative Analysis of GMI and DPR Precipitation Measurements over Global Oceans During Summer Season
This study provides a comprehensive comparison between Global Precipitation Measurement (GPM) Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) measurements through analysis of collocated precipitation at the 19 GHz footprint scale for pixels during hemispheric summer seasons (JJA...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Geosciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3263/15/6/227 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study provides a comprehensive comparison between Global Precipitation Measurement (GPM) Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) measurements through analysis of collocated precipitation at the 19 GHz footprint scale for pixels during hemispheric summer seasons (JJA for Northern Hemisphere and DJF for Southern Hemisphere). Precipitation pixels exceeding 0.2 mm/h are categorized into convective, stratiform, and mixed types based on DPR classifications. While showing generally good agreement in spatial patterns, the GMI and DPR exhibit systematic differences in precipitation intensity measurements. The GMI underestimates convective precipitation intensity by 13.8% but overestimates stratiform precipitation by 12.1% compared to DPR. Mixed precipitation shows the highest occurrence frequency (47.6%) with notable differences between instruments. While measurement differences for convective precipitation have significantly improved from previous Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR) estimates (62% to 13.8%), the overall difference has increased (from 2.6% to 12.6%), primarily due to non-convective precipitation. Latitudinal analysis reveals distinct precipitation regimes: tropical regions (below ~30°) produce intense convective precipitation that contributes about 40% of total precipitation despite lower frequency, while mid-latitudes (beyond 30°) shift toward stratiform-dominated regimes where stratiform precipitation accounts for 60–90% of the total. Additionally, geographical variation in GMI-DPR differences shows a see-saw pattern across latitude bands, with opposite signs between tropical and mid-latitude regions for convective and stratiform precipitation types. A fundamental transition in precipitation characteristics occurs between 30° and 40°, reflecting changes in precipitation mechanisms across Earth’s climate zones. Analysis shows that tropical precipitation systems generate approximately three times more precipitation per unit area than mid-latitude regions. |
---|---|
ISSN: | 2076-3263 |