Research on Collaborative Governance Mechanism of Air Pollutant Emissions in Ports: A Tripartite Evolutionary Game Analysis with Evidence from Ningbo-Zhoushan Port

Under the “Dual Carbon” strategy, collaborative governance of port atmospheric pollutants and carbon emissions is critical for low-carbon transformation. Focusing on Ningbo-Zhoushan Port (48% regional ship emissions), this study examines government, port enterprises, and public interactions. A tripa...

Full description

Saved in:
Bibliographic Details
Main Authors: Kebiao Yuan, Lina Ma, Renxiang Wang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/12/2025
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Under the “Dual Carbon” strategy, collaborative governance of port atmospheric pollutants and carbon emissions is critical for low-carbon transformation. Focusing on Ningbo-Zhoushan Port (48% regional ship emissions), this study examines government, port enterprises, and public interactions. A tripartite evolutionary game model with numerical simulation reveals dynamic patterns and key factors. The results show the following: (1) A substitution effect exists between government incentive costs and penalty intensity—increased environmental governance budgets reduce the probability of government incentives, whereas higher public reporting rewards accelerate corporate emission reduction convergence. (2) Public supervision exhibits cyclical fluctuations due to conflicts between individual rationality and collective interests, with excessive reporting rewards potentially triggering free-rider behavior. (3) The system exhibits two stable equilibria: a low-efficiency equilibrium (0,0,0) and a high-efficiency equilibrium (1,1,1). The latter requires policy cost compensation, corporate emission reduction gains exceeding investments, and a supervision benefit–cost ratio greater than 1. Accordingly, the study proposes a three-dimensional “Incentive–Constraint–Collaboration” governance strategy, recommending floating penalty mechanisms, green financial instrument innovation, and community supervision network optimization to balance environmental benefits with fiscal sustainability. This research provides a dynamic decision-making framework for multi-agent collaborative emission reduction in ports, offering both methodological innovation and practical guidance value.
ISSN:2227-7390