Improved Flood Insights: Diffusion-Based SAR-to-EO Image Translation
Floods, exacerbated by climate change, necessitate timely and accurate situational awareness to support effective disaster response. While electro-optical (EO) satellite imagery has been widely employed for flood assessment, its utility is significantly limited under conditions such as cloud cover o...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/13/2260 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Floods, exacerbated by climate change, necessitate timely and accurate situational awareness to support effective disaster response. While electro-optical (EO) satellite imagery has been widely employed for flood assessment, its utility is significantly limited under conditions such as cloud cover or nighttime. Synthetic Aperture Radar (SAR) provides consistent imaging regardless of weather or lighting conditions but it remains challenging for human analysts to interpret. To bridge this modality gap, we present diffusion-based SAR-to-EO image translation (DSE), a novel framework designed specifically for enhancing the interpretability of SAR imagery in flood scenarios. Unlike conventional GAN-based approaches, our DSE leverages the Brownian Bridge Diffusion Model to achieve stable and high-fidelity EO synthesis. Furthermore, it integrates a self-supervised SAR denoising module to effectively suppress SAR-specific speckle noise, thereby improving the quality of the translated outputs. Quantitative experiments on the SEN12-FLOOD dataset show that our method improves PSNR by 3.23 dB and SSIM by 0.10 over conventional SAR-to-EO baselines. Additionally, a user study with SAR experts revealed that flood segmentation performance using synthetic EO (SynEO) paired with SAR was nearly equivalent to using true EO–SAR pairs, with only a 0.0068 IoU difference. These results confirm the practicality of the DSE framework as an effective solution for EO image synthesis and flood interpretation in SAR-only environments. |
---|---|
ISSN: | 2072-4292 |