Piezoelectric sensor characterization in buckling mode for structural dynamic strain measurements

The buckling mode in piezoelectric materials offers advantages such as an increased measurable strain range, ease of installation, and extended service life. This paper investigates the potential of piezoelectric sensors operating in buckling mode for structural strain measurement by evaluating key...

Full description

Saved in:
Bibliographic Details
Main Authors: Aliakbar Ghaderiaram, Erik Schlangen, Mohammad Fotouhi
Format: Article
Language:English
Published: Elsevier 2025-12-01
Series:Sensors and Actuators Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666053925000803
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The buckling mode in piezoelectric materials offers advantages such as an increased measurable strain range, ease of installation, and extended service life. This paper investigates the potential of piezoelectric sensors operating in buckling mode for structural strain measurement by evaluating key factors including boundary conditions, sensor response linearity under dynamic loading, and impedance engineering to optimize the voltage–strain relationship. A structural extension was developed to facilitate sensor integration and to enable the application of different buckling boundary conditions. Results show that the clamped–clamped configuration generated at least 1.65 times higher output voltage, and three times greater peak strain compared to other boundary conditions. An experimentally validated analytical model was employed to assess and improve the performance of buckled piezoelectric sensors in dynamic environments. The findings highlight that introducing initial buckling reduces signal perturbations, enhances voltage linearity across loading frequencies, and extends the effective strain measurement range. Furthermore, impedance engineering was used to successfully mitigate the nonlinear effects of transient response, thereby improving signal stability and accuracy in dynamic strain monitoring applications.
ISSN:2666-0539