Study on the Complexity Evolution of the Aviation Network in China

As China’s economy grows and travel demand increases, its aviation market has evolved to become the second-largest in the world. This study presents a pioneering analysis of China’s aviation network evolution (1990–2024) by integrating temporal dynamics into a network density matrix theory, addressi...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuolei Zhou, Cheng Li, Shiguo Deng
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Systems
Subjects:
Online Access:https://www.mdpi.com/2079-8954/13/7/563
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839615157448212480
author Shuolei Zhou
Cheng Li
Shiguo Deng
author_facet Shuolei Zhou
Cheng Li
Shiguo Deng
author_sort Shuolei Zhou
collection DOAJ
description As China’s economy grows and travel demand increases, its aviation market has evolved to become the second-largest in the world. This study presents a pioneering analysis of China’s aviation network evolution (1990–2024) by integrating temporal dynamics into a network density matrix theory, addressing critical gaps in prior static network analyses. Unlike conventional studies focusing on isolated topological metrics, we introduce a triangulated methodology: ① a network sequence analysis capturing structural shifts in degree distribution, clustering coefficient, and path length; ② novel redundancy–entropy coupling quantifying complexity evolution beyond traditional efficiency metrics; and ③ economic-network coordination modeling with spatial autocorrelation validation. Key innovations reveal previously unrecognized dynamics: ① Time-embedded density matrices (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi></mrow></semantics></math></inline-formula>) demonstrate how sparsity balances information propagation efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi></mrow></semantics></math></inline-formula>) and response diversity, resolving the paradox of functional yet sparse connectivity. ② Redundancy–entropy synergy exposes adaptive trade-offs. Entropy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi></mrow></semantics></math></inline-formula>) rises 18% (2000–2024), while redundancy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula>) rebounds post-2010 (0.25→0.33), reflecting the strategic resilience enhancement after early efficiency-focused phases. ③ Economic-network coupling exhibits strong spatial autocorrelation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>o</mi><mi>r</mi><mi>a</mi><mi>n</mi><mo>’</mo><mi>s</mi><mtext> </mtext><mi>I</mi><mo>></mo><mn>0.16</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo><</mo><mn>0.05</mn></mrow></semantics></math></inline-formula>), with eastern China achieving “primary coordination”, while western regions lag due to geographical constraints. The empirical results confirm structural self-organization. Power-law strengthening, route growth exponentially outpacing cities, and clustering (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi></mrow></semantics></math></inline-formula>) rising 16% as the path length (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi></mrow></semantics></math></inline-formula>) increases, validating the hierarchical hub formation. These findings establish aviation networks as dynamically optimized systems where economic policies and topological laws interactively drive evolution, offering a paradigm shift from descriptive to predictive network management.
format Article
id doaj-art-ec28a95bd4f44ddfb9d72f2d6e552ff3
institution Matheson Library
issn 2079-8954
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Systems
spelling doaj-art-ec28a95bd4f44ddfb9d72f2d6e552ff32025-07-25T13:37:07ZengMDPI AGSystems2079-89542025-07-0113756310.3390/systems13070563Study on the Complexity Evolution of the Aviation Network in ChinaShuolei Zhou0Cheng Li1Shiguo Deng2College of Air Transportation, Shanghai University of Engineering Science, Shanghai 201600, ChinaCollege of Air Transportation, Shanghai University of Engineering Science, Shanghai 201600, ChinaCollege of Air Transportation, Shanghai University of Engineering Science, Shanghai 201600, ChinaAs China’s economy grows and travel demand increases, its aviation market has evolved to become the second-largest in the world. This study presents a pioneering analysis of China’s aviation network evolution (1990–2024) by integrating temporal dynamics into a network density matrix theory, addressing critical gaps in prior static network analyses. Unlike conventional studies focusing on isolated topological metrics, we introduce a triangulated methodology: ① a network sequence analysis capturing structural shifts in degree distribution, clustering coefficient, and path length; ② novel redundancy–entropy coupling quantifying complexity evolution beyond traditional efficiency metrics; and ③ economic-network coordination modeling with spatial autocorrelation validation. Key innovations reveal previously unrecognized dynamics: ① Time-embedded density matrices (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi></mrow></semantics></math></inline-formula>) demonstrate how sparsity balances information propagation efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi></mrow></semantics></math></inline-formula>) and response diversity, resolving the paradox of functional yet sparse connectivity. ② Redundancy–entropy synergy exposes adaptive trade-offs. Entropy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi></mrow></semantics></math></inline-formula>) rises 18% (2000–2024), while redundancy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula>) rebounds post-2010 (0.25→0.33), reflecting the strategic resilience enhancement after early efficiency-focused phases. ③ Economic-network coupling exhibits strong spatial autocorrelation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>o</mi><mi>r</mi><mi>a</mi><mi>n</mi><mo>’</mo><mi>s</mi><mtext> </mtext><mi>I</mi><mo>></mo><mn>0.16</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo><</mo><mn>0.05</mn></mrow></semantics></math></inline-formula>), with eastern China achieving “primary coordination”, while western regions lag due to geographical constraints. The empirical results confirm structural self-organization. Power-law strengthening, route growth exponentially outpacing cities, and clustering (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi></mrow></semantics></math></inline-formula>) rising 16% as the path length (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi></mrow></semantics></math></inline-formula>) increases, validating the hierarchical hub formation. These findings establish aviation networks as dynamically optimized systems where economic policies and topological laws interactively drive evolution, offering a paradigm shift from descriptive to predictive network management.https://www.mdpi.com/2079-8954/13/7/563network sequence analysisredundancy–entropy couplingaviation network evolutiontime-embedded density matrixeconomic-network coordination
spellingShingle Shuolei Zhou
Cheng Li
Shiguo Deng
Study on the Complexity Evolution of the Aviation Network in China
Systems
network sequence analysis
redundancy–entropy coupling
aviation network evolution
time-embedded density matrix
economic-network coordination
title Study on the Complexity Evolution of the Aviation Network in China
title_full Study on the Complexity Evolution of the Aviation Network in China
title_fullStr Study on the Complexity Evolution of the Aviation Network in China
title_full_unstemmed Study on the Complexity Evolution of the Aviation Network in China
title_short Study on the Complexity Evolution of the Aviation Network in China
title_sort study on the complexity evolution of the aviation network in china
topic network sequence analysis
redundancy–entropy coupling
aviation network evolution
time-embedded density matrix
economic-network coordination
url https://www.mdpi.com/2079-8954/13/7/563
work_keys_str_mv AT shuoleizhou studyonthecomplexityevolutionoftheaviationnetworkinchina
AT chengli studyonthecomplexityevolutionoftheaviationnetworkinchina
AT shiguodeng studyonthecomplexityevolutionoftheaviationnetworkinchina