Study on the Complexity Evolution of the Aviation Network in China
As China’s economy grows and travel demand increases, its aviation market has evolved to become the second-largest in the world. This study presents a pioneering analysis of China’s aviation network evolution (1990–2024) by integrating temporal dynamics into a network density matrix theory, addressi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Systems |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-8954/13/7/563 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As China’s economy grows and travel demand increases, its aviation market has evolved to become the second-largest in the world. This study presents a pioneering analysis of China’s aviation network evolution (1990–2024) by integrating temporal dynamics into a network density matrix theory, addressing critical gaps in prior static network analyses. Unlike conventional studies focusing on isolated topological metrics, we introduce a triangulated methodology: ① a network sequence analysis capturing structural shifts in degree distribution, clustering coefficient, and path length; ② novel redundancy–entropy coupling quantifying complexity evolution beyond traditional efficiency metrics; and ③ economic-network coordination modeling with spatial autocorrelation validation. Key innovations reveal previously unrecognized dynamics: ① Time-embedded density matrices (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi></mrow></semantics></math></inline-formula>) demonstrate how sparsity balances information propagation efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi></mrow></semantics></math></inline-formula>) and response diversity, resolving the paradox of functional yet sparse connectivity. ② Redundancy–entropy synergy exposes adaptive trade-offs. Entropy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi></mrow></semantics></math></inline-formula>) rises 18% (2000–2024), while redundancy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi></mrow></semantics></math></inline-formula>) rebounds post-2010 (0.25→0.33), reflecting the strategic resilience enhancement after early efficiency-focused phases. ③ Economic-network coupling exhibits strong spatial autocorrelation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>o</mi><mi>r</mi><mi>a</mi><mi>n</mi><mo>’</mo><mi>s</mi><mtext> </mtext><mi>I</mi><mo>></mo><mn>0.16</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo><</mo><mn>0.05</mn></mrow></semantics></math></inline-formula>), with eastern China achieving “primary coordination”, while western regions lag due to geographical constraints. The empirical results confirm structural self-organization. Power-law strengthening, route growth exponentially outpacing cities, and clustering (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi></mrow></semantics></math></inline-formula>) rising 16% as the path length (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi></mrow></semantics></math></inline-formula>) increases, validating the hierarchical hub formation. These findings establish aviation networks as dynamically optimized systems where economic policies and topological laws interactively drive evolution, offering a paradigm shift from descriptive to predictive network management. |
---|---|
ISSN: | 2079-8954 |