MIXED CORE SUBCHANNEL MODEL FOR SUBCAL AND COUPLING WITH ANDREA

This paper presents the results of an analysis of flow distribution in VVER-1000 mixed core consisting of fuel assemblies with non-identical spacing grids. The calculation was carried out using the modified subchannel code SUBCAL-AZ which allows to calculate 3D thermal-hydraulic characteristics of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Vojtěch Caha, Jiří Čížek
Format: Article
Language:English
Published: Czech Technical University in Prague 2018-12-01
Series:Acta Polytechnica CTU Proceedings
Subjects:
Online Access:https://ojs.cvut.cz/ojs/index.php/APP/article/view/5223
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the results of an analysis of flow distribution in VVER-1000 mixed core consisting of fuel assemblies with non-identical spacing grids. The calculation was carried out using the modified subchannel code SUBCAL-AZ which allows to calculate 3D thermal-hydraulic characteristics of the coolant flow in the full core subchannel model coupled with the neutron-physical code ANDREA. This full core subchannel model was created in three variants depending on the ANDREA calculations. The first variant (homogeneous core) consisted of 163 hydraulically identical fuel assemblies TVSA-T mod.2, whereas the other variants (mixed cores) consisted of fuel assemblies TVSA-T mod.0, mod.1 and mod.2. These fuel assemblies mainly differ in types, number and axial coordinate of spacing grids and also in diameter of guide tubes. The influence of mixed core to flow distribution was obtained by comparing these variants.
ISSN:2336-5382