Hierarchically structured macro-mesoporous carbon catalysts for saccharification of cellulose
Hierarchically structured macro-mesoporous carbon catalysts were synthesized using dual templates of poly(methyl methacrylate) (PMMA) and Pluronic-123 to enhance cellulose saccharification. Characterizations conducted through scanning electron microscopy (SEM), X-ray diffraction (XRD), N2 adsorption...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
KeAi Communications Co., Ltd.
2025-06-01
|
Series: | Green Carbon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2950155525000047 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hierarchically structured macro-mesoporous carbon catalysts were synthesized using dual templates of poly(methyl methacrylate) (PMMA) and Pluronic-123 to enhance cellulose saccharification. Characterizations conducted through scanning electron microscopy (SEM), X-ray diffraction (XRD), N2 adsorption-desorption isotherms, Fourier transform infrared (FT-IR) spectroscopy, and titration techniques confirmed high surface areas and specific pore size distributions, with macropores ranging from 78.3 to 251 nm and mesopores around 2.43–6.23 nm. An optimal PMMA-to-Tetraethyl orthosilicate (TEOS) ratio of 1:1.6 facilitated the highest cellulose conversion rate of 59.3% and a glucose yield of 22.1%. Notably, the medium-sized macropore catalyst, MMCS60-M, outperformed its purely mesoporous counterpart, with conversion rates and glucose yields of 80.8% and 45.5%, respectively. These results suggest the importance of a tailored pore architecture to enhance the accessibility of acid sites and facilitate effective mass transport, which is beneficial for optimizing saccharification processes. |
---|---|
ISSN: | 2950-1555 |