Experimental Validation of UAV Search and Detection System in Real Wilderness Environment

Search and rescue (SAR) missions require reliable search methods to locate survivors, especially in challenging environments. Introducing unmanned aerial vehicles (UAVs) can enhance the efficiency of SAR missions while simultaneously increasing the safety of everyone involved. Motivated by this, we...

Full description

Saved in:
Bibliographic Details
Main Authors: Stella Dumenčić, Luka Lanča, Karlo Jakac, Stefan Ivić
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/9/7/473
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Search and rescue (SAR) missions require reliable search methods to locate survivors, especially in challenging environments. Introducing unmanned aerial vehicles (UAVs) can enhance the efficiency of SAR missions while simultaneously increasing the safety of everyone involved. Motivated by this, we experiment with autonomous UAV search for humans in Mediterranean karst environment. The UAVs are directed using the Heat equation-driven area coverage (HEDAC) ergodic control method based on known probability density and detection function. The sensing framework consists of a probabilistic search model, motion control system, and object detection enabling to calculate the target’s detection probability. This paper focuses on the experimental validation of the proposed sensing framework. The uniform probability density, achieved by assigning suitable tasks to 78 volunteers, ensures the even probability of finding targets. The detection model is based on the You Only Look Once (YOLO) model trained on a previously collected orthophoto image database. The experimental search is carefully planned and conducted, while recording as many parameters as possible. The thorough analysis includes the motion control system, object detection, and search validation. The assessment of the detection and search performance strongly indicates that the detection model in the UAV control algorithm is aligned with real-world results.
ISSN:2504-446X