Optimal Operating Patterns for the Energy Management of PEMFC-Based Micro-CHP Systems in European Single-Family Houses

Commercial proton exchange membrane fuel cell (PEMFC)-based micro-combined heat and power (micro-CHP) systems are operated by rule-based energy management systems (EMSs). These EMSs are easy to implement but do not perform an explicit economic optimization. On the other hand, an optimal EMS can expl...

Full description

Saved in:
Bibliographic Details
Main Authors: Santiago Navarro, Juan Manuel Herrero, Xavier Blasco, Alberto Pajares
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7527
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Commercial proton exchange membrane fuel cell (PEMFC)-based micro-combined heat and power (micro-CHP) systems are operated by rule-based energy management systems (EMSs). These EMSs are easy to implement but do not perform an explicit economic optimization. On the other hand, an optimal EMS can explicitly incorporate an economic optimization, but its implementation is more complex and may not be viable in practice. In a previous contribution, it was shown that current rule-based EMSs do not fully exploit the economic potential of micro-CHP systems due to their inability to adapt to changing scenarios. This study investigates the economic performance and behavior of an optimal EMS in 46 scenarios within the European framework. This EMS is designed using a model predictive control approach, and it is formulated as a mixed integer linear programming problem. The results reveal that there are only four basic optimal operating patterns, which vary depending on the scenario. This finding enables the design of an EMS that is computationally simpler than the optimal EMS but capable of emulating it and, therefore, is able to adapt effectively to changing scenarios. This new EMS would improve the cost-effectiveness of PEMFC-based micro-CHP systems, reducing their payback period and facilitating their mass market uptake.
ISSN:2076-3417