Microstructural Synergy of ZrC-NbC Reinforcements and Its Coupled Effects on Mechanical and Dynamic Properties of Titanium Matrix Composites
In aerospace applications, titanium matrix composites (TMCs) must balance high strength, thermal stability, and vibration resistance. This study investigates the microstructural evolution and multi-property correlations in single-phase ZrC-reinforced (TMC1) and dual-phase ZrC-NbC-co-reinforced (TMC2...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-05-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/15/6/573 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In aerospace applications, titanium matrix composites (TMCs) must balance high strength, thermal stability, and vibration resistance. This study investigates the microstructural evolution and multi-property correlations in single-phase ZrC-reinforced (TMC1) and dual-phase ZrC-NbC-co-reinforced (TMC2) TMCs via SEM/TEM, XRD, tensile testing, and ANSYS simulations. The in situ reaction (Ti + ZrC/NbC → TiC + Zr/Nb) and NbC-induced grain boundary pinning drive microstructural optimization in TMC2, achieving 30% higher reinforcement homogeneity and 5 μm grain refinement from 15 μm to 10 μm. TMC2’s tensile strength reaches 1210 MPa, a 15% increase over TMC1, with an elongation at a break of 4.74%, 2.2 times that of TMC1. This performance stems from synergistic Hall–Petch strengthening and nano-TiC dispersion strengthening. Modal simulations show TMC2 exhibits a first-mode natural frequency of 98.5 kHz, 1.1% higher than TMC1’s 97.4 kHz, with maximum displacement reduced by 2.3%. These improvements correlate with TMC2’s elevated elastic modulus (125 GPa vs. 110 GPa) and uniform mass/stiffness distribution. The ZrC-NbC synergy establishes a microstructural framework for the concurrent enhancement of static and dynamic properties, offering critical insights for a high-performance TMC design in extreme environments. |
---|---|
ISSN: | 2075-4701 |