Dynamic Behavior and Damage Mechanisms of Concrete Subjected to Freeze–Thaw Cycles
To explore how the water–cement ratio affects the mechanical behavior of concrete subjected to freeze–thaw cycles, four sets of concrete samples with water–cement ratios of 0.41, 0.44, 0.47, and 0.50 were prepared for laboratory analysis. These samples underwent varying numbers of freeze–thaw cycles...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Buildings |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-5309/15/12/2009 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To explore how the water–cement ratio affects the mechanical behavior of concrete subjected to freeze–thaw cycles, four sets of concrete samples with water–cement ratios of 0.41, 0.44, 0.47, and 0.50 were prepared for laboratory analysis. These samples underwent varying numbers of freeze–thaw cycles (0, 10, 20, and 30) before being tested using the split Hopkinson pressure bar (SHPB) system for dynamic compression. The experimental data show that the mass of the concrete specimens follows a non-monotonic trend during freeze–thaw cycling, initially rising and then gradually declining. Simultaneously, key dynamic mechanical properties, such as compressive strength and elastic modulus, markedly deteriorate, as evidenced by rightward shifts in the stress–strain curves. Importantly, the extent of degradation differs notably depending on the water–cement ratio. Additional analysis highlights a strong association between the fractal nature of the fracture patterns and the effects of freeze–thaw cycles: under consistent freeze–thaw conditions not only does the fractal dimension consistently increase with the number of cycles, but it also positively correlates with the water–cement ratio. |
---|---|
ISSN: | 2075-5309 |