SECURE METRIC DIMENSION OF ALTERNATE SNAKE GRAPHS

We study the NP-hard problem of determining the secure metric dimension of graphs. A resolving set uniquely identifies each vertex by its distance vector to the set; the smallest is the metric basis, and its size is the metric dimension. A set is secure if each outside vertex can replace an inside...

Πλήρης περιγραφή

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Basma Mohamed, Iqbal M. Batiha, Nidal Anakira, Mohammad Odeh, Mohammad Shehab, Huda Odetatllah
Μορφή: Άρθρο
Γλώσσα:Αγγλικά
Έκδοση: Institute of Mechanics of Continua and Mathematical Sciences 2025-05-01
Σειρά:Journal of Mechanics of Continua and Mathematical Sciences
Θέματα:
Διαθέσιμο Online:https://jmcms.s3.amazonaws.com/wp-content/uploads/2025/05/14191738/jmcms-2505011-Secure-Metric-Dimension-Batiha.pdf
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
Περιγραφή
Περίληψη:We study the NP-hard problem of determining the secure metric dimension of graphs. A resolving set uniquely identifies each vertex by its distance vector to the set; the smallest is the metric basis, and its size is the metric dimension. A set is secure if each outside vertex can replace an inside one while preserving resolvability. Computing this parameter is NP-complete and has applications in routing, image processing, and network verification. This paper determines the secure metric dimension for alternate snake graphs, including k-polygonal, double, and triple alternate triangular snakes.
ISSN:0973-8975
2454-7190