Decision-Level Multi-Sensor Fusion to Improve Limitations of Single-Camera-Based CNN Classification in Precision Farming: Application in Weed Detection

The United States leads in corn production and consumption in the world with an estimated USD 50 billion per year. There is a pressing need for the development of novel and efficient techniques aimed at enhancing the identification and eradication of weeds in a manner that is both environmentally su...

Full description

Saved in:
Bibliographic Details
Main Authors: Md. Nazmuzzaman Khan, Adibuzzaman Rahi, Mohammad Al Hasan, Sohel Anwar
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Computation
Subjects:
Online Access:https://www.mdpi.com/2079-3197/13/7/174
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The United States leads in corn production and consumption in the world with an estimated USD 50 billion per year. There is a pressing need for the development of novel and efficient techniques aimed at enhancing the identification and eradication of weeds in a manner that is both environmentally sustainable and economically advantageous. Weed classification for autonomous agricultural robots is a challenging task for a single-camera-based system due to noise, vibration, and occlusion. To address this issue, we present a multi-camera-based system with decision-level sensor fusion to improve the limitations of a single-camera-based system in this paper. This study involves the utilization of a convolutional neural network (CNN) that was pre-trained on the ImageNet dataset. The CNN subsequently underwent re-training using a limited weed dataset to facilitate the classification of three distinct weed species: Xanthium strumarium (Common Cocklebur), Amaranthus retroflexus (Redroot Pigweed), and Ambrosia trifida (Giant Ragweed). These weed species are frequently encountered within corn fields. The test results showed that the re-trained VGG16 with a transfer-learning-based classifier exhibited acceptable accuracy (99% training, 97% validation, 94% testing accuracy) and inference time for weed classification from the video feed was suitable for real-time implementation. But the accuracy of CNN-based classification from video feed from a single camera was found to deteriorate due to noise, vibration, and partial occlusion of weeds. Test results from a single-camera video feed show that weed classification accuracy is not always accurate for the spray system of an agricultural robot (AgBot). To improve the accuracy of the weed classification system and to overcome the shortcomings of single-sensor-based classification from CNN, an improved Dempster–Shafer (DS)-based decision-level multi-sensor fusion algorithm was developed and implemented. The proposed algorithm offers improvement on the CNN-based weed classification when the weed is partially occluded. This algorithm can also detect if a sensor is faulty within an array of sensors and improves the overall classification accuracy by penalizing the evidence from a faulty sensor. Overall, the proposed fusion algorithm showed robust results in challenging scenarios, overcoming the limitations of a single-sensor-based system.
ISSN:2079-3197