3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data

Abstract Advanced Interferometric Synthetic Aperture Radar (InSAR) data has led to an extensive observation of Earth's surface displacements. Whereas the combined use of high‐resolution InSAR, leveling and GPS data may enable highly detailed three‐dimensional deformation models, publicly availa...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Luis A. Gallardo, Olga Sarychikhina, Ewa Glowacka, Braulio Robles
Формат: Статья
Язык:английский
Опубликовано: Wiley 2025-07-01
Серии:Geophysical Research Letters
Предметы:
Online-ссылка:https://doi.org/10.1029/2025GL115316
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
_version_ 1839614057990062080
author Luis A. Gallardo
Olga Sarychikhina
Ewa Glowacka
Braulio Robles
author_facet Luis A. Gallardo
Olga Sarychikhina
Ewa Glowacka
Braulio Robles
author_sort Luis A. Gallardo
collection DOAJ
description Abstract Advanced Interferometric Synthetic Aperture Radar (InSAR) data has led to an extensive observation of Earth's surface displacements. Whereas the combined use of high‐resolution InSAR, leveling and GPS data may enable highly detailed three‐dimensional deformation models, publicly available modeling and inversion algorithms either seek a single homogeneously deformed source or involve a few thousand modeling elements. We present and release a conjugate‐gradient inversion code that searches for the three‐dimensional distribution of the volumetric strain that predicts simultaneously any observed InSAR, leveling and GPS surface displacement. By applying our algorithm on to leveling and InSAR data of the Cerro Prieto Geothermal area in Mexico for the 2012–2015 period, we find that the volume loss matches the extent and depth of the known geothermal reservoir or recharging aquifer and corresponds to 13% of the reported geothermal fluid extraction volume. We also identify non‐volumetric deformation near the tectonic faults, possibly associated with creep displacement.
format Article
id doaj-art-e7de75d4de2f42cbbef585fccf2f9312
institution Matheson Library
issn 0094-8276
1944-8007
language English
publishDate 2025-07-01
publisher Wiley
record_format Article
series Geophysical Research Letters
spelling doaj-art-e7de75d4de2f42cbbef585fccf2f93122025-07-26T08:35:56ZengWileyGeophysical Research Letters0094-82761944-80072025-07-015213n/an/a10.1029/2025GL1153163D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling DataLuis A. Gallardo0Olga Sarychikhina1Ewa Glowacka2Braulio Robles3Earth Science Division Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Ensenada MexicoEarth Science Division Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Ensenada MexicoEarth Science Division Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Ensenada MexicoInstituto Mexicano de Tecnología del Agua (IMTA) Jiutepec MexicoAbstract Advanced Interferometric Synthetic Aperture Radar (InSAR) data has led to an extensive observation of Earth's surface displacements. Whereas the combined use of high‐resolution InSAR, leveling and GPS data may enable highly detailed three‐dimensional deformation models, publicly available modeling and inversion algorithms either seek a single homogeneously deformed source or involve a few thousand modeling elements. We present and release a conjugate‐gradient inversion code that searches for the three‐dimensional distribution of the volumetric strain that predicts simultaneously any observed InSAR, leveling and GPS surface displacement. By applying our algorithm on to leveling and InSAR data of the Cerro Prieto Geothermal area in Mexico for the 2012–2015 period, we find that the volume loss matches the extent and depth of the known geothermal reservoir or recharging aquifer and corresponds to 13% of the reported geothermal fluid extraction volume. We also identify non‐volumetric deformation near the tectonic faults, possibly associated with creep displacement.https://doi.org/10.1029/2025GL115316InSAR inversionCerro Prieto geothermal fieldjoint inversionsubsidence modeling
spellingShingle Luis A. Gallardo
Olga Sarychikhina
Ewa Glowacka
Braulio Robles
3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data
Geophysical Research Letters
InSAR inversion
Cerro Prieto geothermal field
joint inversion
subsidence modeling
title 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data
title_full 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data
title_fullStr 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data
title_full_unstemmed 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data
title_short 3D Volumetric Strain Distribution of the Cerro Prieto Geothermal Field Inferred From Inverse Modeling of InSAR and Leveling Data
title_sort 3d volumetric strain distribution of the cerro prieto geothermal field inferred from inverse modeling of insar and leveling data
topic InSAR inversion
Cerro Prieto geothermal field
joint inversion
subsidence modeling
url https://doi.org/10.1029/2025GL115316
work_keys_str_mv AT luisagallardo 3dvolumetricstraindistributionofthecerroprietogeothermalfieldinferredfrominversemodelingofinsarandlevelingdata
AT olgasarychikhina 3dvolumetricstraindistributionofthecerroprietogeothermalfieldinferredfrominversemodelingofinsarandlevelingdata
AT ewaglowacka 3dvolumetricstraindistributionofthecerroprietogeothermalfieldinferredfrominversemodelingofinsarandlevelingdata
AT brauliorobles 3dvolumetricstraindistributionofthecerroprietogeothermalfieldinferredfrominversemodelingofinsarandlevelingdata