Discrepancies in Mineral Oil Confirmation by Two-Dimensional Gas Chromatography–Mass Spectrometry: A Call for Harmonization
Three different vegetable oils, namely coconut oil, palm olein and olive oil, were analyzed for mineral oil hydrocarbons (MOHs) in our laboratory and in five commercial laboratories well recognized for their expertise in this field. The analysis consisted of a preliminary quantitative estimation of...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/30/13/2830 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three different vegetable oils, namely coconut oil, palm olein and olive oil, were analyzed for mineral oil hydrocarbons (MOHs) in our laboratory and in five commercial laboratories well recognized for their expertise in this field. The analysis consisted of a preliminary quantitative estimation of MOH content by hyphenated liquid chromatography–gas chromatography with flame ionization detection (LC-GC-FID), followed by a confirmatory analysis of MOH components by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToF). The results provided by the six laboratories were compared to check their consistency, which would have led to a hypothetical commercial agreement or dispute scenarios, for instance. The comparison was based merely on information provided by the laboratories in their analytical reports (i.e., the methodology was not challenged, and chromatograms were not reviewed). Additionally, some of the laboratories were willing to provide some more information or details of the analysis. Similar quantitative results were provided by all six laboratories, emphasizing the utility of the current available harmonized guidelines and official standards for this method. However, as regards confirmatory results, discrepancies were observed among some laboratories in terms of the detection of MOH markers at low levels and the interpretation of GCxGC-ToF information. Even taking into account the limitation of this study as regards the reduced number of laboratories included, it highlights the need for harmonizing the GCxGC-ToF confirmatory method for MOHs in order to increase the alignment of results between laboratories for this kind of analysis. |
---|---|
ISSN: | 1420-3049 |