Generating Large Time–Bandwidth Product RF-Chirped Waveforms Using Vernier Dual-Optical Frequency Combs

Chirped radio-frequency signals are essential waveforms in radar systems. To enhance resolution and improve the signal-to-noise ratio through higher energy transmission, chirps with high time–bandwidth products are highly desirable. Photonic technologies, with their ability to handle broad electrica...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
מחבר ראשי: Mohammed S. Alshaykh
פורמט: Article
שפה:אנגלית
יצא לאור: MDPI AG 2025-07-01
סדרה:Photonics
נושאים:
גישה מקוונת:https://www.mdpi.com/2304-6732/12/7/700
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
תיאור
סיכום:Chirped radio-frequency signals are essential waveforms in radar systems. To enhance resolution and improve the signal-to-noise ratio through higher energy transmission, chirps with high time–bandwidth products are highly desirable. Photonic technologies, with their ability to handle broad electrical bandwidths, have been widely employed in the generation, filtering, processing, and detection of broadband electrical waveforms. In this work, we propose a photonics-based large-TBWP RF chirp generator utilizing dual optical frequency combs with a small difference in the repetition rate. By employing dispersion modules for frequency-to-time mapping, we convert the spectral interferometric patterns into a temporal RF sinusoidal carrier signal whose frequency is swept through the optical shot-to-shot delay. We derive analytical expressions to quantify the system’s performance under various design parameters, including the comb repetition rate and its offset, the second-order dispersion, the transform-limited optical pulse width, and the photodetector’s bandwidth limitations. We benchmark the expected system performance in terms of RF bandwidth, chirp duration, chirp rate, frequency step size, and TBWP. Using realistic dual-comb source parameters, we demonstrate the feasibility of generating RF chirps with a duration of 284.44 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>s and a bandwidth of 234.05 GHz, corresponding to a TBWP of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.3</mn><mo>×</mo><msup><mn>10</mn><mn>7</mn></msup></mrow></semantics></math></inline-formula>.
ISSN:2304-6732