STHFD: Spatial–Temporal Hypergraph-Based Model for Aero-Engine Bearing Fault Diagnosis

Accurate fault diagnosis in aerospace transmission systems is essential for ensuring equipment reliability and operational safety, especially for aero-engine bearings. However, current approaches relying on Convolutional Neural Networks (CNNs) for Euclidean data and Graph Convolutional Networks (GCN...

Full description

Saved in:
Bibliographic Details
Main Authors: Panfeng Bao, Wenjun Yi, Yue Zhu, Yufeng Shen, Boon Xian Chai
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/12/7/612
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate fault diagnosis in aerospace transmission systems is essential for ensuring equipment reliability and operational safety, especially for aero-engine bearings. However, current approaches relying on Convolutional Neural Networks (CNNs) for Euclidean data and Graph Convolutional Networks (GCNs) for non-Euclidean structures struggle to simultaneously capture heterogeneous data properties and complex spatio-temporal dependencies. To address these limitations, we propose a novel Spatial–Temporal Hypergraph Fault Diagnosis framework (STHFD). Unlike conventional graphs that model pairwise relations, STHFD employs hypergraphs to represent high-order spatial–temporal correlations more effectively. Specifically, it constructs distinct spatial and temporal hyperedges to capture multi-scale relationships among fault signals. A type-aware hypergraph learning strategy is then applied to encode these correlations into discriminative embeddings. Extensive experiments on aerospace fault datasets demonstrate that STHFD achieves superior classification performance compared to state-of-the-art diagnostic models, highlighting its potential for enhancing intelligent fault detection in complex aerospace systems.
ISSN:2226-4310