The Thermoelastic Component of the Photoacoustic Response in a 3D-Printed Polyamide Coated with Pigment Dye: A Two-Layer Model Incorporating Fractional Heat Conduction Theories

This study presents a theoretical model for the thermoelastic response in transmission-mode photoacoustic systems that feature a two-layer structure. The model incorporates volumetric optical absorption in both layers and is based on classical heat conduction theory, hyperbolic generalized heat cond...

Full description

Saved in:
Bibliographic Details
Main Authors: Marica N. Popovic, Slobodanka P. Galovic, Ervin K. Lenzi, Aloisi Somer
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/7/456
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a theoretical model for the thermoelastic response in transmission-mode photoacoustic systems that feature a two-layer structure. The model incorporates volumetric optical absorption in both layers and is based on classical heat conduction theory, hyperbolic generalized heat conduction theory, and fractional heat conduction models including inertial memory in Generalizations of the Cattaneo Equation (GCEI, GCEII, and GCEIII). To validate the model, comparisons were made with the existing literature models. Using the proposed model, the thermoelastic photoacoustic response of a two-layer system composed of a 3D-printed porous polyamide (PA12) substrate coated with a thin, highly absorptive protective dye layer is analyzed. We obtain that the thickness and thermal conduction in properties of the coating are very important in influencing the thermoelastic component and should not be overlooked. Furthermore, the thermoelastic component is affected by the selected fractional model—whether it is subdiffusion or superdiffusion—along with the value of the order of the fractional derivative, as well as the optical absorption coefficient of the layer being investigated. Additionally, it is concluded that the phase has a greater impact than the amplitude when selecting the appropriate theoretical heat conduction model.
ISSN:2504-3110