Robust Low-Overlap Point Cloud Registration via Displacement-Corrected Geometric Consistency for Enhanced 3D Sensing

Accurate alignment of 3D point clouds, achieved by ubiquitous sensors such as LiDAR and depth cameras, is critical for enhancing perception capabilities in robotics, autonomous navigation, and environmental reconstruction. However, low-overlap scenarios—common due to limited sensor field-of-view or...

Full description

Saved in:
Bibliographic Details
Main Authors: Xin Wang, Qingguang Li
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/14/4332
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate alignment of 3D point clouds, achieved by ubiquitous sensors such as LiDAR and depth cameras, is critical for enhancing perception capabilities in robotics, autonomous navigation, and environmental reconstruction. However, low-overlap scenarios—common due to limited sensor field-of-view or occlusions—severely degrade registration robustness and sensing reliability. To address this challenge, this paper proposes a novel geometric consistency optimization and rectification deep learning network named GeoCORNet. By synergistically designing a geometric consistency enhancement module, a bidirectional cross-attention mechanism, a predictive displacement rectification strategy, and joint optimization of overlap loss with displacement loss, GeoCORNet significantly improves registration accuracy and robustness in complex scenarios. The Attentive Cross-Consistency module of GeoCORNet integrates distance and angular consistency constraints with bidirectional cross-attention to significantly suppress noise from non-overlapping regions while reinforcing geometric coherence in overlapping areas. The predictive displacement rectification strategy dynamically rectifies erroneous correspondences through predicted 3D displacements instead of discarding them, maximizing the utility of sparse sensor data. Furthermore, a novel displacement loss function was developed to effectively constrain the geometric distribution of corrected point-pairs. Experimental results demonstrate that our method outperformed existing approaches in the aspects of registration recall, rotation error, and algorithm robustness under low-overlap conditions. These advances establish a new paradigm for robust 3D sensing in real-world applications where partial sensor data is prevalent.
ISSN:1424-8220