Lightweight Convolutional Network for Bearing Fault Diagnosis
In the field of bearing fault diagnosis, many convolutional models with excellent performance face challenges in industrial applications due to deployment cost constraints. This paper aims to develop a lightweight diagnostic method with reduced parameters. We investigate the feasibility of using de...
Zapisane w:
| Główni autorzy: | LIU Hui, LI Yang, HOU Yimin |
|---|---|
| Format: | Artykuł |
| Język: | chiński |
| Wydane: |
Harbin University of Science and Technology Publications
2024-08-01
|
| Seria: | Journal of Harbin University of Science and Technology |
| Hasła przedmiotowe: | |
| Dostęp online: | https://hlgxb.hrbust.edu.cn/#/digest?ArticleID=2352 |
| Etykiety: |
Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
|
Podobne zapisy
-
Fault Identification Model Using Convolutional Neural Networks with Transformer Architecture
od: Yongxin Fan, i wsp.
Wydane: (2025-06-01) -
MSFF-Net: Multi-Sensor Frequency-Domain Feature Fusion Network with Lightweight 1D CNN for Bearing Fault Diagnosis
od: Miao Dai, i wsp.
Wydane: (2025-07-01) -
Research on Fault Diagnosis of High-Voltage Circuit Breakers Using Gramian-Angular-Field-Based Dual-Channel Convolutional Neural Network
od: Mingkun Yang, i wsp.
Wydane: (2025-07-01) -
Deep Learning Method for Bearing Fault Diagnosis
od: LIU Xiu, i wsp.
Wydane: (2022-08-01) -
Transfer Learning‐Based Domain‐Adaptive One‐Dimensional Convolutional Neural Network for Fault Diagnosis of Rotating Machines
od: Fasikaw Kibrete, i wsp.
Wydane: (2025-07-01)