Analyzing the Impact of Climate Change on Compound Flooding Under Interdecadal Variations in Rainfall and Tide

Coastal regions are increasingly threatened by compound flooding due to the increasing intensities of storm surges and rainfall under climate change. However, relevant research has been limited because significant amounts of data, scenarios, and computations are often required to evaluate long-term...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiun-Huei Jang, Tien-Hao Chang, Yen-Mo Wu, Ting-En Liao, Chih-Hung Hsu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Hydrology
Subjects:
Online Access:https://www.mdpi.com/2306-5338/12/7/182
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coastal regions are increasingly threatened by compound flooding due to the increasing intensities of storm surges and rainfall under climate change. However, relevant research has been limited because significant amounts of data, scenarios, and computations are often required to evaluate long-term variations in compound flood risk. In this study, a framework was proposed through efficient hydraulic simulations and a consequence-based statistical method using data projected under different general circulation models (GCMs). The analysis focuses on analyzing the interdecadal trends of compound flood risk for a coastal area in southwestern Taiwan across a baseline period and four future periods in the short-term (2021–2040), mid-term (2041–2060), mid-to-long-term (2061–2080), and long-term (2081–2100). Although discrepancies exist in the short term, the results show that the values of the annual maximum flood area exhibit an increasing pattern in the future for all GCMs by increasing about 27.8% on average at the end of the 21st century. This means that, under the same flood areas given in the baseline period, the return periods will decrease, and flood events will occur more frequently in the future. This framework can be extended to other regions to assess the impacts of compound flooding with different geographical and meteorological conditions.
ISSN:2306-5338