Fractional multiwavelet methods for solving spatiotemporal fractional diffusion equations with non-smooth solutions

This introduces a new method that effectively solves spatiotemporal fractional diffusion equation(FDE) using fractional Lagrange interpolation and fractional multiwavelets. The method effectively addresses situations with non-smooth solutions. The approach begins by discretizing the time variable t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jian Zhang, Chaoyue Guan, Hong Du
Format: Artikel
Sprache:Englisch
Veröffentlicht: Vilnius Gediminas Technical University 2025-07-01
Schriftenreihe:Mathematical Modelling and Analysis
Schlagworte:
Online-Zugang:https://journals.vilniustech.lt/index.php/MMA/article/view/22650
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This introduces a new method that effectively solves spatiotemporal fractional diffusion equation(FDE) using fractional Lagrange interpolation and fractional multiwavelets. The method effectively addresses situations with non-smooth solutions. The approach begins by discretizing the time variable t using the fractional piecewise parabolic Lagrange interpolation method. For the spatial variables, we construct fractional multiwavelets. Through the least residue method, we obtain approximate solutions, while also conducting convergence analysis. Numerical demonstrations validate the high accuracy achieved by the proposed method, notably showcasing the better approximation capability of fractional polynomials compared to their integer counterparts.
ISSN:1392-6292
1648-3510