Quantum Creation of a Friedmann-Robertson-Walker Universe: Riesz Fractional Derivative Applied
In this work, we apply fractional calculus to study quantum cosmology. Specifically, our Wheeler-DeWitt (WDW) equation includes a Friedman-Robertson-Walker (FRW) geometry, a radiation fluid, a positive cosmological constant (<inline-formula><math xmlns="http://www.w3.org/1998/Math/Math...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-05-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/9/6/349 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we apply fractional calculus to study quantum cosmology. Specifically, our Wheeler-DeWitt (WDW) equation includes a Friedman-Robertson-Walker (FRW) geometry, a radiation fluid, a positive cosmological constant (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Λ</mi></semantics></math></inline-formula>), and an <i>ad-hoc</i> potential. We employ the Riesz fractional derivative, which introduces a parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula>, in the WDW equation. We investigate numerically the tunneling probability for the Universe to emerge using a suitable WKB approximation. Our findings are as follows. When we decrease the value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, the tunneling probability also decreases, suggesting that if fractional features could be considered to ascertain among different early universe scenarios, then the value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> (meaning strict locality and standard cosmology) would be the most likely. Finally, our results also allow for an interesting discussion between selecting values for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Λ</mi></semantics></math></inline-formula> (in a non-fractional conventional set-up) versus balancing, e.g., both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Λ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> in the fractional framework. |
---|---|
ISSN: | 2504-3110 |