Harnessing hybrid perception on multi-scale features for hand-foot-mouth disease multi-region prediction based on Seq2Seq.

Accurate prediction of Hand, Foot, and Mouth Disease (HFMD) is crucial for effective epidemic prevention and control. Existing prediction models often overlook the cross-regional transmission dynamics of HFMD, limiting their applicability to single regions. Furthermore, their ability to perceive spa...

Full description

Saved in:
Bibliographic Details
Main Authors: Bingbing Lei, Xuanjun Zhu, Tao Zhou, Yuxi Zhang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0326206
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate prediction of Hand, Foot, and Mouth Disease (HFMD) is crucial for effective epidemic prevention and control. Existing prediction models often overlook the cross-regional transmission dynamics of HFMD, limiting their applicability to single regions. Furthermore, their ability to perceive spatio-temporal features holistically remains limited, hindering the precise modeling of epidemic trends. To address these limitations, a novel HFMD prediction model named Seq2Seq-HMF is proposed, which is based on the Sequence-to-Sequence(Seq2Seq) framework. This model leverages hybrid perception of multi-scale features. First, the model utilizes graph structure modeling for multi-regional epidemic-related features. Secondly, a novel Spatio-Temporal Parallel Encoding(STPE) Cell is designed; multiple STPE Cells constitute an encoder capable of hybrid perception across multi-scale spatio-temporal features. Within this encoder, graph-based feature representation and iterative convolution operations enable the capture of cumulative influence of neighboring regions across temporal and spatial dimensions, facilitating efficient extraction of spatio-temporal dependencies between multiple regions. Finally, the decoder incorporates a frequency-enhanced channel attention mechanism(FECAM) to improve the model's comprehension of temporal correlations and periodic features, further refining prediction accuracy and multi-step forecasting capabilities. Experimental results, utilizing multi-regional data from Japan to predict HFMD cases one to four weeks ahead, demonstrate that our proposed Seq2Seq-HMF model outperforms baseline models. Additionally, the model performs well on single-region data from a city in southern China, confirming its strong generalization ability.
ISSN:1932-6203