Applications of InSAR for Monitoring Post-Wildfire Ground Surface Displacements

Wildfires pose a significant threat to the natural and built environment and may alter the hydrologic cycle in burned areas increasing the risk of flooding, erosion, debris flows, and shallow landslides. In this paper, we investigate the feasibility of using differential interferometric synthetic ap...

Full description

Saved in:
Bibliographic Details
Main Authors: Ryan van der Heijden, Ehsan Ghazanfari, Donna M. Rizzo, Ben Leshchinsky, Mandar Dewoolkar
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/12/2047
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wildfires pose a significant threat to the natural and built environment and may alter the hydrologic cycle in burned areas increasing the risk of flooding, erosion, debris flows, and shallow landslides. In this paper, we investigate the feasibility of using differential interferometric synthetic aperture radar (DInSAR) to interpret changes in ground surface elevation following the 2017 Eagle Creek Wildfire in Oregon, USA. We show that DInSAR is capable of measuring ground surface displacements in burned areas not obscured by vegetation cover and that interferometric coherence can differentiate between areas that experienced different burn severities. The distribution of projected vertical displacement was analyzed, suggesting that different areas experience variable rates of change, with some showing little to no change for up to four years after the fire. Comparison of the projected vertical displacements with cumulative precipitation and soil moisture suggests that increases in precipitation and soil moisture are related to periods of increased vertical displacement. The findings of this study suggest that DInSAR may have value where in situ instrumentation is infeasible and may assist in prioritizing areas at high-risk of erosion or other changes over large geographical extents and measurement locations for deployment of instrumentation.
ISSN:2072-4292