Semantic–Spatial Feature Fusion With Dynamic Graph Refinement for Remote Sensing Image Captioning
Remote sensing image captioning aims to generate semantically accurate descriptions that are closely linked to the visual features of remote sensing images. Existing approaches typically emphasize fine-grained extraction of visual features and capturing global information. However, they often overlo...
保存先:
| 主要な著者: | Maofu Liu, Jiahui Liu, Xiaokang Zhang |
|---|---|
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
IEEE
2025-01-01
|
| シリーズ: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| 主題: | |
| オンライン・アクセス: | https://ieeexplore.ieee.org/document/11039674/ |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Contrastive learning based remote sensing text-to-image generation for few-shot remote sensing image captioning
著者:: Haonan Zhou, 等
出版事項: (2025-12-01) -
A Multi-Semantic Feature Fusion Method for Complex Address Matching of Chinese Addresses
著者:: Pengpeng Li, 等
出版事項: (2025-06-01) -
PhishingGNN: Phishing Email Detection Using Graph Attention Networks and Transformer-Based Feature Extraction
著者:: Mejdl Safran, 等
出版事項: (2025-01-01) -
A Cross-Spatial Differential Localization Network for Remote Sensing Change Captioning
著者:: Ruijie Wu, 等
出版事項: (2025-07-01) -
Integrating Abstract Meaning Representation to Enhance Transformer-Based Image Captioning
著者:: Nguyen Van Thinh, 等
出版事項: (2025-01-01)