Neural Successive Cancellation Polar Decoder With Tanh-Based Modified LLR Over FSO Turbulence Channel

The neural successive cancellation (NSC) decoder with tanh-based modified log-likelihood ratio (LLR) is proposed for reducing the decoding latency of polar codes over free space optical (FSO) turbulence channel. The conventional successive cancellation (SC) decoder is partitioned into multiple sub-b...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiafei Fang, Meihua Bi, Shilin Xiao, Hang Yang, Zhiyu Chen, Zhiyang Liu, Weisheng Hu
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9222501/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The neural successive cancellation (NSC) decoder with tanh-based modified log-likelihood ratio (LLR) is proposed for reducing the decoding latency of polar codes over free space optical (FSO) turbulence channel. The conventional successive cancellation (SC) decoder is partitioned into multiple sub-blocks, which are replaced by multiple sub neural network (NN) decoders with tanh-based modified LLR. The recursive characteristic of the polar sequences reliability ranking given in 5G standard enables the sub-NN decoder to be uniquely determined by code length and the number of information bits. Confirmed by the simulation, the bit error rate (BER) performance of NSC decoder with tanh-based modified LLR is close to the conventional SC decoder over turbulence channel for the practical-length polar codes. Regarding turbulence-stability, the NSC decoder trained in moderate and strong turbulence conditions have stable performance in a wide range of turbulence conditions. Moreover, in comparison of decoding latency, the NSC decoder with tanh-based modified LLR takes less than 25% time steps of SC decoder in the same code length.
ISSN:1943-0655