Magnetic Data Correction for Fluxgate Magnetometers on a Paramagnetic Unmanned Surface Vehicle: A Comparative Analysis in Marine Surveys
Unmanned Surface Vehicle (USV) offers a cost-effective platform for high-resolution marine magnetic surveys using shipborne fluxgate magnetometers. However, platform-induced magnetic interference and electromagnetic interference (EMI) can degrade data quality, even with paramagnetic hulls. This stud...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/25/14/4511 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Unmanned Surface Vehicle (USV) offers a cost-effective platform for high-resolution marine magnetic surveys using shipborne fluxgate magnetometers. However, platform-induced magnetic interference and electromagnetic interference (EMI) can degrade data quality, even with paramagnetic hulls. This study evaluates fluxgate magnetometer data acquired from a paramagnetic-hulled USV. Noise characterization identified EMI and maneuver-induced high-frequency noise, the latter of which was effectively reduced through low-pass filtering. We compared four different correction approaches addressing both vessel attitude and magnetization. The results demonstrate that the paramagnetic hull significantly reduces magnetic interference and shortens the duration of viscous magnetization (VM) effects caused by eddy currents in the platform, compared to conventional ferromagnetic vessels. Nonetheless, residual magnetization from onboard ferromagnetic components still requires correction. A method utilizing all nine components of the susceptibility tensor demonstrated improved accuracy and stability. Despite corrections, low-frequency VM-related noise during azimuth changes and a consistent absolute offset (~200 nT) remain when compared to towed scalar magnetometer data. These findings validate the use of paramagnetic USV for vector magnetic surveys, highlighting their benefit in VM mitigation while emphasizing the need for further development in VM correction and offset correction to achieve high-precision measurements. |
---|---|
ISSN: | 1424-8220 |