A Review of Digital Twinning Applications for Floating Offshore Wind Turbines: Insights, Innovations, and Implementation
This paper presents a comprehensive literature review on the digital twinning of floating offshore wind turbines (FOWTs). In this study, the digital twin (DT) is defined as a dynamic virtual model that accurately mirrors a physical system throughout its lifecycle, continuously updated with real-time...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/18/13/3369 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a comprehensive literature review on the digital twinning of floating offshore wind turbines (FOWTs). In this study, the digital twin (DT) is defined as a dynamic virtual model that accurately mirrors a physical system throughout its lifecycle, continuously updated with real-time data and use simulations, machine learning, and analytics to support informed decision-making. The recent advancements and major issues have been introduced, which need to be addressed before realizing a FOWT DT that can be effectively used for life extension and operation and maintenance planning. This review synthesizes relevant literature reviews focused on modeling FOWT and its specific components along with the latest research. It specifically focuses on the structural, mechanical, and energy production components of FOWTs within the DT framework. The state of the art DT for FOWT, or large scale operational civil and energy infrastructure, is not yet matured to perform real-time update of digital replicas of these systems. The main barriers include real-time coupled modeling with high fidelity, the design of sensor networks, and optimization methods that synergize the sensor data and simulations to calibrate the model. Based on the literature survey provided in this paper, one of the main barriers is uncertainty associated with the external loads applied to FOWT. In this review paper, a robust method for inverse analysis in the absence of load information has been introduced and validated by using simulated experiments. Furthermore, the regulatory requirements have been provided for FOWT life extension and the potential of DT in achieving that. |
---|---|
ISSN: | 1996-1073 |