Leveraging Design of Experiments to Unravel the Amplification Mechanism of Single‐Molecule Wide‐Field Biosensors

Abstract Detecting single molecules on large interfaces, spanning several square micrometers, is often considered unfeasible due to the minimal perturbation individual molecules exert on the sensing surface. However, biological systems, such as cellular membranes, demonstrate remarkable sensitivity,...

Full description

Saved in:
Bibliographic Details
Main Authors: Michele Catacchio, Mariapia Caputo, Lucia Sarcina, Cinzia Di Franco, Matteo Piscitelli, Erika Castrignanò, Paolo Bollella, Gaetano Scamarcio, Eleonora Macchia, Luisa Torsi
Format: Article
Language:English
Published: Wiley-VCH 2025-07-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202500090
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839608931152822272
author Michele Catacchio
Mariapia Caputo
Lucia Sarcina
Cinzia Di Franco
Matteo Piscitelli
Erika Castrignanò
Paolo Bollella
Gaetano Scamarcio
Eleonora Macchia
Luisa Torsi
author_facet Michele Catacchio
Mariapia Caputo
Lucia Sarcina
Cinzia Di Franco
Matteo Piscitelli
Erika Castrignanò
Paolo Bollella
Gaetano Scamarcio
Eleonora Macchia
Luisa Torsi
author_sort Michele Catacchio
collection DOAJ
description Abstract Detecting single molecules on large interfaces, spanning several square micrometers, is often considered unfeasible due to the minimal perturbation individual molecules exert on the sensing surface. However, biological systems, such as cellular membranes, demonstrate remarkable sensitivity, achieving single‐molecule detection on interfaces as large as 103 µm2, despite the stark mismatch between molecular footprints and surface areas. While these amplification mechanisms are well‐documented, their molecular and biophysical foundations remain poorly understood. To contribute to probing these phenomena, a Design of Experiments (DoE) approach explores how pH and ionic strength in conditioning solutions influence Surface Plasmon Resonance (SPR) detection in the single‐molecule regime. Conditioning a physisorbed layer of capturing antibodies at low pH emerges as the key strategy, enabling the reliable detection of only 6 ± 2 IgG molecules with a significant SPR signal. The analysis further reveals that pH conditioning induces a refractive index shift within the antibody layer, which is quantitatively correlated with changes in zeta potential (ζ‐potential). These findings provide critical insights into the mechanisms driving ultrasensitive SPR detection and establish a data‐driven framework for advancing biosensing technologies.
format Article
id doaj-art-dd8d70c84a5144ae9dcc8a1a4938d1b4
institution Matheson Library
issn 2196-7350
language English
publishDate 2025-07-01
publisher Wiley-VCH
record_format Article
series Advanced Materials Interfaces
spelling doaj-art-dd8d70c84a5144ae9dcc8a1a4938d1b42025-07-31T05:08:29ZengWiley-VCHAdvanced Materials Interfaces2196-73502025-07-011214n/an/a10.1002/admi.202500090Leveraging Design of Experiments to Unravel the Amplification Mechanism of Single‐Molecule Wide‐Field BiosensorsMichele Catacchio0Mariapia Caputo1Lucia Sarcina2Cinzia Di Franco3Matteo Piscitelli4Erika Castrignanò5Paolo Bollella6Gaetano Scamarcio7Eleonora Macchia8Luisa Torsi9Dipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari Aldo Moro Bari 70125 ItalyDipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari Aldo Moro Bari 70125 ItalyDipartimento di Chimica Università degli Studi di Bari Aldo Moro Bari 70125 ItalyCNR IFN Bari 70125 ItalyDipartimento Interateneo di Fisica Università degli Studi di Bari Aldo Moro Bari 70125 ItalyDipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari Aldo Moro Bari 70125 ItalyDipartimento di Chimica Università degli Studi di Bari Aldo Moro Bari 70125 ItalyNEST Istituto Nanoscienze ‐ CNR and Scuola Normale Superiore Pisa I‐56127 ItalyCentre for Colloid and Surface Science Dipartimento di Chimica Università degli Studi di Bari Aldo Moro Bari 70125 ItalyDipartimento di Chimica Università degli Studi di Bari Aldo Moro Bari 70125 ItalyAbstract Detecting single molecules on large interfaces, spanning several square micrometers, is often considered unfeasible due to the minimal perturbation individual molecules exert on the sensing surface. However, biological systems, such as cellular membranes, demonstrate remarkable sensitivity, achieving single‐molecule detection on interfaces as large as 103 µm2, despite the stark mismatch between molecular footprints and surface areas. While these amplification mechanisms are well‐documented, their molecular and biophysical foundations remain poorly understood. To contribute to probing these phenomena, a Design of Experiments (DoE) approach explores how pH and ionic strength in conditioning solutions influence Surface Plasmon Resonance (SPR) detection in the single‐molecule regime. Conditioning a physisorbed layer of capturing antibodies at low pH emerges as the key strategy, enabling the reliable detection of only 6 ± 2 IgG molecules with a significant SPR signal. The analysis further reveals that pH conditioning induces a refractive index shift within the antibody layer, which is quantitatively correlated with changes in zeta potential (ζ‐potential). These findings provide critical insights into the mechanisms driving ultrasensitive SPR detection and establish a data‐driven framework for advancing biosensing technologies.https://doi.org/10.1002/admi.202500090biochemical amplificationdesign of experimentimmunoassaysplasmonic sensorssingle‐molecule sensingsurface‐plasmon‐resonance
spellingShingle Michele Catacchio
Mariapia Caputo
Lucia Sarcina
Cinzia Di Franco
Matteo Piscitelli
Erika Castrignanò
Paolo Bollella
Gaetano Scamarcio
Eleonora Macchia
Luisa Torsi
Leveraging Design of Experiments to Unravel the Amplification Mechanism of Single‐Molecule Wide‐Field Biosensors
Advanced Materials Interfaces
biochemical amplification
design of experiment
immunoassays
plasmonic sensors
single‐molecule sensing
surface‐plasmon‐resonance
title Leveraging Design of Experiments to Unravel the Amplification Mechanism of Single‐Molecule Wide‐Field Biosensors
title_full Leveraging Design of Experiments to Unravel the Amplification Mechanism of Single‐Molecule Wide‐Field Biosensors
title_fullStr Leveraging Design of Experiments to Unravel the Amplification Mechanism of Single‐Molecule Wide‐Field Biosensors
title_full_unstemmed Leveraging Design of Experiments to Unravel the Amplification Mechanism of Single‐Molecule Wide‐Field Biosensors
title_short Leveraging Design of Experiments to Unravel the Amplification Mechanism of Single‐Molecule Wide‐Field Biosensors
title_sort leveraging design of experiments to unravel the amplification mechanism of single molecule wide field biosensors
topic biochemical amplification
design of experiment
immunoassays
plasmonic sensors
single‐molecule sensing
surface‐plasmon‐resonance
url https://doi.org/10.1002/admi.202500090
work_keys_str_mv AT michelecatacchio leveragingdesignofexperimentstounraveltheamplificationmechanismofsinglemoleculewidefieldbiosensors
AT mariapiacaputo leveragingdesignofexperimentstounraveltheamplificationmechanismofsinglemoleculewidefieldbiosensors
AT luciasarcina leveragingdesignofexperimentstounraveltheamplificationmechanismofsinglemoleculewidefieldbiosensors
AT cinziadifranco leveragingdesignofexperimentstounraveltheamplificationmechanismofsinglemoleculewidefieldbiosensors
AT matteopiscitelli leveragingdesignofexperimentstounraveltheamplificationmechanismofsinglemoleculewidefieldbiosensors
AT erikacastrignano leveragingdesignofexperimentstounraveltheamplificationmechanismofsinglemoleculewidefieldbiosensors
AT paolobollella leveragingdesignofexperimentstounraveltheamplificationmechanismofsinglemoleculewidefieldbiosensors
AT gaetanoscamarcio leveragingdesignofexperimentstounraveltheamplificationmechanismofsinglemoleculewidefieldbiosensors
AT eleonoramacchia leveragingdesignofexperimentstounraveltheamplificationmechanismofsinglemoleculewidefieldbiosensors
AT luisatorsi leveragingdesignofexperimentstounraveltheamplificationmechanismofsinglemoleculewidefieldbiosensors