Optical Fiber-Based Structural Health Monitoring: Advancements, Applications, and Integration with Artificial Intelligence for Civil and Urban Infrastructure

Structural health monitoring (SHM) plays a vital role in ensuring the safety, durability, and performance of civil infrastructure. This review delves into the significant advancements in optical fiber sensor (OFS) technologies such as Fiber Bragg Gratings, Distributed Temperature Sensing, and Brillo...

Full description

Saved in:
Bibliographic Details
Main Authors: Nikita V. Golovastikov, Nikolay L. Kazanskiy, Svetlana N. Khonina
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/12/6/615
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Structural health monitoring (SHM) plays a vital role in ensuring the safety, durability, and performance of civil infrastructure. This review delves into the significant advancements in optical fiber sensor (OFS) technologies such as Fiber Bragg Gratings, Distributed Temperature Sensing, and Brillouin-based systems, which have emerged as powerful tools for enhancing SHM capabilities. Offering high sensitivity, resistance to electromagnetic interference, and real-time distributed monitoring, these sensors present a superior alternative to conventional methods. This paper also explores the integration of OFSs with Artificial Intelligence (AI), which enables automated damage detection, intelligent data analysis, and predictive maintenance. Through case studies across key infrastructure domains, including bridges, tunnels, high-rise buildings, pipelines, and offshore structures, the review demonstrates the adaptability and scalability of these sensor systems. Moreover, the role of SHM is examined within the broader context of civil and urban infrastructure, where IoT connectivity, AI-driven analytics, and big data platforms converge to create intelligent and responsive infrastructure. While challenges remain, such as installation complexity, calibration issues, and cost, ongoing innovation in hybrid sensor networks, low-power systems, and edge computing points to a promising future. This paper offers a comprehensive amalgamation of current progress and future directions, outlining a strategic path for next-generation SHM in resilient urban environments.
ISSN:2304-6732