Multi-Energy Optimal Dispatching of Port Microgrids Taking into Account the Uncertainty of Photovoltaic Power

To tackle the problems of high scheduling costs and low photovoltaic (PV) accommodation rates in port microgrids, which are caused by the coupling of uncertainties in new energy output and load randomness, this paper proposes an optimized scheduling method that integrates scenario analysis with mult...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoyong Wang, Xing Wei, Hanqing Zhang, Bailiang Liu, Yanmin Wang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/12/3216
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To tackle the problems of high scheduling costs and low photovoltaic (PV) accommodation rates in port microgrids, which are caused by the coupling of uncertainties in new energy output and load randomness, this paper proposes an optimized scheduling method that integrates scenario analysis with multi-energy complementarity. Firstly, based on the improved Iterative Self-organizing Data Analysis Techniques Algorithm (ISODATA) clustering algorithm and backward reduction method, a set of typical scenarios that represent the uncertainties of PV and load is generated. Secondly, a multi-energy complementary system model is constructed, which includes thermal power, PV, energy storage, electric vehicle (EV) clusters, and demand response. Then, a planning model centered on economy is established. Through multi-energy coordinated optimization, supply–demand balance and cost control are achieved. The simulation results based on the port microgrid of the LEKKI Port in Nigeria show that the proposed method can significantly reduce system operating costs by 18% and improve the PV accommodation rate through energy storage time-shifting, flexible EV scheduling, and demand response incentives. The research findings provide theoretical and technical support for the low-carbon transformation of energy systems in high-volatility load scenarios, such as ports.
ISSN:1996-1073