Lateral Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;Ge&#x002F;Si<sub>0.15</sub>Ge<sub>0.85</sub> Double-Heterojunction Laser With SiN Stressor

Integrated circuit technology has undergone significant advancements and progress over the past few decades. However, as the demand to further shrink circuit sizes increases, traditional IC interconnections face challenges such as RC delay, energy loss, and interconnect interference, which become in...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinyang Sun, Bin Shu, Huiyong Hu
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10193758/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839645153894072320
author Xinyang Sun
Bin Shu
Huiyong Hu
author_facet Xinyang Sun
Bin Shu
Huiyong Hu
author_sort Xinyang Sun
collection DOAJ
description Integrated circuit technology has undergone significant advancements and progress over the past few decades. However, as the demand to further shrink circuit sizes increases, traditional IC interconnections face challenges such as RC delay, energy loss, and interconnect interference, which become increasingly prominent. Optical interconnection emerges as a promising solution to mitigate these issues by enabling reductions in circuit size, power consumption, and signal delay. In this article, we propose a novel lateral Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;Ge&#x002F;Si<sub>0.15</sub>Ge<sub>0.85</sub> p-i-n double-heterojunction laser array, leveraging SiN stress as a key component. Our study focuses on the EL emission properties of individual lasers within the array, the distribution of SiN stress within the device, and the impact of stress on the laser properties. Additionally, we design a Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;SiO<sub>2</sub> distributed Bragg reflector (DBR) tailored for the laser array. Simulation results demonstrate a peak luminescence wavelength of 1849 nm and a threshold current density of 190 kA&#x002F;cm<sup>2</sup> at 300 K.
format Article
id doaj-art-dbb8a62d124e48ae85de916ab13fac6a
institution Matheson Library
issn 1943-0655
language English
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Photonics Journal
spelling doaj-art-dbb8a62d124e48ae85de916ab13fac6a2025-07-01T23:24:59ZengIEEEIEEE Photonics Journal1943-06552023-01-011541810.1109/JPHOT.2023.329868210193758Lateral Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;Ge&#x002F;Si<sub>0.15</sub>Ge<sub>0.85</sub> Double-Heterojunction Laser With SiN StressorXinyang Sun0https://orcid.org/0000-0002-7218-3024Bin Shu1https://orcid.org/0009-0007-1309-464XHuiyong Hu2National Key Laboratory of Wide Band Gap Semiconductor, School of microelectronics, Xidian University, Xi&#x0027;an, ChinaNational Key Laboratory of Wide Band Gap Semiconductor, School of microelectronics, Xidian University, Xi&#x0027;an, ChinaNational Key Laboratory of Wide Band Gap Semiconductor, School of microelectronics, Xidian University, Xi&#x0027;an, ChinaIntegrated circuit technology has undergone significant advancements and progress over the past few decades. However, as the demand to further shrink circuit sizes increases, traditional IC interconnections face challenges such as RC delay, energy loss, and interconnect interference, which become increasingly prominent. Optical interconnection emerges as a promising solution to mitigate these issues by enabling reductions in circuit size, power consumption, and signal delay. In this article, we propose a novel lateral Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;Ge&#x002F;Si<sub>0.15</sub>Ge<sub>0.85</sub> p-i-n double-heterojunction laser array, leveraging SiN stress as a key component. Our study focuses on the EL emission properties of individual lasers within the array, the distribution of SiN stress within the device, and the impact of stress on the laser properties. Additionally, we design a Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;SiO<sub>2</sub> distributed Bragg reflector (DBR) tailored for the laser array. Simulation results demonstrate a peak luminescence wavelength of 1849 nm and a threshold current density of 190 kA&#x002F;cm<sup>2</sup> at 300 K.https://ieeexplore.ieee.org/document/10193758/Photoelectric integrationdouble-heterojunction laserSiN stressorGermaniumDBR
spellingShingle Xinyang Sun
Bin Shu
Huiyong Hu
Lateral Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;Ge&#x002F;Si<sub>0.15</sub>Ge<sub>0.85</sub> Double-Heterojunction Laser With SiN Stressor
IEEE Photonics Journal
Photoelectric integration
double-heterojunction laser
SiN stressor
Germanium
DBR
title Lateral Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;Ge&#x002F;Si<sub>0.15</sub>Ge<sub>0.85</sub> Double-Heterojunction Laser With SiN Stressor
title_full Lateral Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;Ge&#x002F;Si<sub>0.15</sub>Ge<sub>0.85</sub> Double-Heterojunction Laser With SiN Stressor
title_fullStr Lateral Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;Ge&#x002F;Si<sub>0.15</sub>Ge<sub>0.85</sub> Double-Heterojunction Laser With SiN Stressor
title_full_unstemmed Lateral Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;Ge&#x002F;Si<sub>0.15</sub>Ge<sub>0.85</sub> Double-Heterojunction Laser With SiN Stressor
title_short Lateral Si<sub>0.15</sub>Ge<sub>0.85</sub>&#x002F;Ge&#x002F;Si<sub>0.15</sub>Ge<sub>0.85</sub> Double-Heterojunction Laser With SiN Stressor
title_sort lateral si sub 0 15 sub ge sub 0 85 sub x002f ge x002f si sub 0 15 sub ge sub 0 85 sub double heterojunction laser with sin stressor
topic Photoelectric integration
double-heterojunction laser
SiN stressor
Germanium
DBR
url https://ieeexplore.ieee.org/document/10193758/
work_keys_str_mv AT xinyangsun lateralsisub015subgesub085subx002fgex002fsisub015subgesub085subdoubleheterojunctionlaserwithsinstressor
AT binshu lateralsisub015subgesub085subx002fgex002fsisub015subgesub085subdoubleheterojunctionlaserwithsinstressor
AT huiyonghu lateralsisub015subgesub085subx002fgex002fsisub015subgesub085subdoubleheterojunctionlaserwithsinstressor