Machine Learning-Driven Optimization of Machining Parameters Optimization for Cutting Forces and Surface Roughness in Micro-Milling of AlSi10Mg Produced by Powder Bed Fusion Additive Manufacturing

This study focuses on optimizing machining parameters in the micro-milling of AlSi10Mg aluminum alloy produced via the powder bed fusion additive manufacturing process. Although additive manufacturing enables complex geometries and minimizes material waste, challenges remain in reducing surface roug...

Full description

Saved in:
Bibliographic Details
Main Authors: Zihni Alp Cevik, Koray Ozsoy, Ali Ercetin, Gencay Sariisik
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/12/6553
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study focuses on optimizing machining parameters in the micro-milling of AlSi10Mg aluminum alloy produced via the powder bed fusion additive manufacturing process. Although additive manufacturing enables complex geometries and minimizes material waste, challenges remain in reducing surface roughness and cutting forces during post-processing. Micro-milling experiments were conducted using spindle speeds up to 60,000 rpm, with varied feed rates and cutting depths. Cutting forces (Fx, Fy, and Fz) were measured using a Kistler-9119AA1 mini dynamometer, while surface roughness (Ra) was evaluated with a Nanovea-ST400 3D optical profilometer. Five advanced machine learning models, random forest regressor (RFR), gradient boosting regressor (GBR), LightGBM, CatBoost, and k-nearest neighbors (KNN), were employed to predict cutting forces and surface roughness, with CatBoost achieving the highest predictive accuracy (R<sup>2</sup> > 0.96). Among all models, CatBoost achieved the best predictive performance, with test R<sup>2</sup> values exceeding 0.96 for both force and Ra estimations. Experimental and ML-based results demonstrated that higher feed rates and depths of cut increased cutting forces, particularly in the Fx direction, while elevated spindle speeds reduced forces due to thermal softening. Surface roughness was minimized at lower feed rates and higher spindle speeds. The optimal machining conditions for achieving Ra < 1 µm were identified as ap = 50 µm, n = 30,000 rpm, and fz = 0.25 µm/tooth. This integrated approach supports precision machining of AM aluminum alloys.
ISSN:2076-3417