A Stochastic Optimization Model for Multi-Airport Flight Cooperative Scheduling Considering CvaR of Both Travel and Departure Time
By assuming that both travel and departure time are normally distributed variables, a multi-objective stochastic optimization model for the multi-airport flight cooperative scheduling problem (MAFCSP) with CvaR of travel and departure time is firstly proposed. Herein, conflicts of flights from diffe...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Aerospace |
Subjects: | |
Online Access: | https://www.mdpi.com/2226-4310/12/7/631 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By assuming that both travel and departure time are normally distributed variables, a multi-objective stochastic optimization model for the multi-airport flight cooperative scheduling problem (MAFCSP) with CvaR of travel and departure time is firstly proposed. Herein, conflicts of flights from different airports at the same waypoint can be avoided by simultaneously assigning an optimal route to each flight between the airport and waypoint and determining its practical departure time. Furthermore, several real-world constraints, including the safe interval between any two aircraft at the same waypoint and the maximum allowable delay for each flight, have been incorporated into the proposed model. The primary objective is minimization of both total carbon emissions and delay times for all flights across all airports. A feasible set of non-dominated solutions were obtained using a two-stage heuristic approach-based NSGA-II. Finally, we present a case study of four airports and three waypoints in the Beijing–Tianjin–Hebei region of China to test our study. |
---|---|
ISSN: | 2226-4310 |