A Novel Copula-Based Multi-Feature CFAR Framework for Radar Target Detection

Multi-feature radar target detection enhances the discrimination between targets and clutter, thereby improving detection accuracy. However, the complex nonlinear dependencies among features present significant challenges for precise control of the false alarm rate (FAR). In this paper, a novel cons...

Full description

Saved in:
Bibliographic Details
Main Authors: Juan Li, Yunlong Dong, Ningbo Liu, Yong Huang, Xingyu Jiang, Jinping Sun
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/13/2299
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-feature radar target detection enhances the discrimination between targets and clutter, thereby improving detection accuracy. However, the complex nonlinear dependencies among features present significant challenges for precise control of the false alarm rate (FAR). In this paper, a novel constant false alarm rate (CFAR) framework for multi-feature detection is proposed. First, a Copula-CFAR theorem is established, which models the feature dependence structure and enables the derivation of closed-form expressions for probability of false alarm (PFA) and detection probability across various Copula models. Based on this theory, a multi-feature target detection algorithm is developed to achieve a predefined PFA. Simulation and experimental results validate the effectiveness of the approach. The method outperforms conventional CFAR detectors, including CA-CFAR, OS-CFAR, GO-CFAR, and SO-CFAR. Furthermore, compared to state-of-the-art detectors that utilize three features derived from convex hull, concave hull, convex hull principal component analysis (PCA), and concave hull PCA, the proposed method, which uses only two features, achieves relative improvements of 130.53%, 12.26%, 48.09%, and 34.62%, respectively, at a measured FAR of 0.001.
ISSN:2072-4292