Automated Class Imbalance Learning via Few-Shot Multi-Objective Bayesian Optimization With Deep Kernel Gaussian Processes
Automated Class Imbalance Learning (AutoCIL) is an emerging paradigm that leverages Combined Algorithm Selection and Hyperparameter Optimization (CASH) to automate the configuration of resampling strategies and classifiers for imbalanced classification tasks. Existing AutoCIL methods focus solely on...
Saved in:
| Main Authors: | Zhaoyang Wang, Shuo Wang, Damien Ernst, Chenguang Xiao |
|---|---|
| Format: | Article |
| Sprog: | engelsk |
| Udgivet: |
IEEE
2025-01-01
|
| Serier: | IEEE Access |
| Fag: | |
| Online adgang: | https://ieeexplore.ieee.org/document/11087233/ |
| Tags: |
Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
|
Lignende værker
-
An Intelligent Client Selection Algorithm of Federated Learning for Class-imbalance
af: ZHU Suxia, et al.
Udgivet: (2024-04-01) -
Reinforcement Learning-Based Augmentation of Data Collection for Bayesian Optimization Towards Radiation Survey and Source Localization
af: Jeremy Marquardt, et al.
Udgivet: (2025-04-01) -
Feature Transformation-Based Few-Shot Class-Incremental Learning
af: Xubo Zhang, et al.
Udgivet: (2025-07-01) -
Addressing class imbalance in lassa fever epidemic data, using machine learning: a case study with SMOTE and random forest
af: Osowomuabe Njama-Abang, et al.
Udgivet: (2025-08-01) -
Accelerated Bayesian optimization for CNN+LSTM learning rate tuning via precomputed Gaussian process subspaces in soil analysis
af: Xiaolong Chen, et al.
Udgivet: (2025-08-01)