A UAV-Assisted STAR-RIS Network with a NOMA System
In this paper, we investigate a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted non-orthogonal multiple access (NOMA) communication system where the STAR-RIS is mounted on an unmanned aerial vehicle (UAV) with adjustable altitude. Due to severe blockag...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/13/13/2063 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted non-orthogonal multiple access (NOMA) communication system where the STAR-RIS is mounted on an unmanned aerial vehicle (UAV) with adjustable altitude. Due to severe blockages in urban environments, direct links from the base station (BS) to users are assumed unavailable, and signal transmission is realized via the STAR-RIS. We formulate a joint optimization problem that maximizes the system sum rate by jointly optimizing the UAV’s altitude, BS beamforming vectors, and the STAR-RIS phase shifts, while considering Rician fading channels with altitude-dependent Rician factors. To tackle the maximum achievable rate problem, we adopt a block-wise optimization framework and employ semidefinite relaxation and gradient descent methods. Simulation results show that the proposed scheme achieves up to 22% improvement in achievable rate and significant reduction in bit error rate (BER) compared to benchmark schemes, demonstrating its effectiveness in integrating STAR-RIS and UAV in NOMA networks. |
---|---|
ISSN: | 2227-7390 |