A Smart Housing Recommender for Students in Timișoara: Reinforcement Learning and Geospatial Analytics in a Modern Application

Rental accommodations near European university campuses keep rising in price, while listings remain scattered and opaque. This paper proposes a solution that overcomes these issues by integrating real-time open listing ingestion, zone-level geospatial enrichment, and a reinforcement-learning recomme...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrei-Sebastian Nicula, Andrei Ternauciuc, Radu-Adrian Vasiu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/14/7869
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rental accommodations near European university campuses keep rising in price, while listings remain scattered and opaque. This paper proposes a solution that overcomes these issues by integrating real-time open listing ingestion, zone-level geospatial enrichment, and a reinforcement-learning recommender into one streamlined analysis pipeline. On demand, the system updates price statistics for most districts in Timișoara and returns five budget-safe offers in a short amount of time. By combining adaptive ranking with new spatial metrics, it significantly cuts search time and removes irrelevant offers in pilot trials. Moreover, this implementation is fully open-data, open-source, and free, designed specifically for students to ensure accessibility, transparency, and cost efficiency.
ISSN:2076-3417