Laminar Burning Velocity in Aviation Fuels: Conventional Kerosene, SAFs, and Key Hydrocarbon Components

Sustainable aviation fuels (SAFs) are vitally important for aviation decarbonization. The laminar burning velocity (LBV), a key parameter reflecting the combustion behavior of fuel/oxidizer mixtures, serves as a fundamental metric for evaluating SAF performance. This paper systematically reviews and...

Full description

Saved in:
Bibliographic Details
Main Authors: Zehua Song, Xinsai Yan, Ziyu Liu, Xiaoyi Yang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/14/8098
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sustainable aviation fuels (SAFs) are vitally important for aviation decarbonization. The laminar burning velocity (LBV), a key parameter reflecting the combustion behavior of fuel/oxidizer mixtures, serves as a fundamental metric for evaluating SAF performance. This paper systematically reviews and evaluates the LBV experiment method and the performance of traditional aviation fuel, SAFs produced via different pathways, and individual components (n-alkanes, iso-alkanes, cycloalkanes, and aromatic hydrocarbons, as well as the impacts of isomers and homologues) in aviation fuels. It is found that LBV values of different SAFs exhibit significant fluctuations, approaching or slightly deviating from those of conventional aviation fuels. Carbon number, branching degree, substituent types, and testing methods in the components all affect LBV performance. Specifically, increased branching in iso-alkanes reduces LBV, cyclohexane and benzene show higher LBV than their methylated counterparts (methylcyclohexane and toluene), and n-alkylcyclohexanes/benzenes with short (C1–C3) side chains demonstrate minimal LBV variation. Spherical flame methods yield more consistent (and generally lower) LBV values than stagnation flame techniques. These findings provide insights for optimizing SAF–conventional fuel blends and enhancing drop-in compatibility while ensuring operational safety and usability.
ISSN:2076-3417