Finite‐temperature properties of NbO2 from a deep‐learning interatomic potential
Abstract Using first‐principles‐based machine‐learning potential, molecular dynamics (MD) simulations are performed to investigate the micro‐mechanism in phase transition of NbO2. Treating the DFT results of the low‐ and intermediate‐temperature phases of NbO2 as training data in the deep‐learning m...
Sparad:
| Huvudupphovsmän: | Xinhang Li, Yongqiang Wang, Tianyu Jiao, Zhaoxin Liu, Chuanle Yang, Ri He, Liang Si |
|---|---|
| Materialtyp: | Artikel |
| Språk: | engelska |
| Publicerad: |
Wiley-VCH
2025-06-01
|
| Serie: | Materials Genome Engineering Advances |
| Ämnen: | |
| Länkar: | https://doi.org/10.1002/mgea.70011 |
| Taggar: |
Lägg till en tagg
Inga taggar, Lägg till första taggen!
|
Liknande verk
Liknande verk
-
Phase transition temperatures of ternary multiferroics and interatomic bond A–O strains in their perovskite structures
av: G. A. Geguzina, et al.
Publicerad: (2025-08-01) -
Active delta-learning for fast construction of interatomic potentials and stable molecular dynamics simulations
av: Yaohuang Huang, et al.
Publicerad: (2025-01-01) -
TiAlNb alloy interatomic potentials: comparing passive and active machine learning techniques with MTP and DeePMD
av: Anju Chandran, et al.
Publicerad: (2025-07-01) -
Universal machine learning interatomic potentials poised to supplant DFT in modeling general defects in metals and random alloys
av: Fei Shuang, et al.
Publicerad: (2025-01-01) -
A Pipelined Architecture for Interatomic Interactions Computation Considering Atomic Distribution
av: Chengyang Han, et al.
Publicerad: (2025-01-01)