An Assessment of University Campus Morphological Resilience Under Typical Disaster Scenarios: A Case Study of the Two Campuses of Tianjin University

Amid intensifying climatic threats, university campuses are increasingly vulnerable. Morphological resilience offers a practical pathway to strengthen disaster response in higher-education institutions. However, research on University Campus Morphological Resilience (UCMR) remains underexplored, wit...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuqi Han, Hao Gao
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Land
Subjects:
Online Access:https://www.mdpi.com/2073-445X/14/6/1282
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Amid intensifying climatic threats, university campuses are increasingly vulnerable. Morphological resilience offers a practical pathway to strengthen disaster response in higher-education institutions. However, research on University Campus Morphological Resilience (UCMR) remains underexplored, with gaps in theory, quantitative methodology, and empirical application. The study established a theoretical framework and an assessment system for UCMR, focusing on four core resilience attributes—robustness, redundancy, connectivity, and diversity—in three common disaster scenarios: earthquakes, flooding, and extreme heat. The Weijinlu (WJL) and Beiyangyuan (BYY) campuses of Tianjin University were selected as case studies. We used Unmanned Aerial Vehicle (UAV) photogrammetry to collect morphological data at a high spatial resolution of 0.1 m. UCMR was evaluated for each disaster scenario, followed by a multi-scenario cluster coupling analysis. The results indicate that, first, the WJL Campus exhibited a lower overall UCMR across various disaster scenarios compared to the BYY Campus, particularly during earthquakes and flooding, with less pronounced differences observed under extreme heat. Second, both campuses demonstrate significant spatial heterogeneity in UCMR across three disaster scenarios. Third, the WJL Campus performs better in redundancy and diversity but worse in connectivity, with lower robustness under earthquakes and flooding, and higher robustness under extreme heat. Fourth, UCMR in BYY Campus displayed consistent spatial patterns characterized by high-resilience clusters, while UCMR in WJL Campus presented greater variability across the three disaster scenarios, showcasing complex multi-scenario cluster types and spatial fragmentation. Based on the above findings, we developed tailored UCMR optimization strategies. The study offers a scientific reference for resilience-oriented campus planning and disaster risk management.
ISSN:2073-445X