Iterative Matrix Techniques Based on Averages

Matrices have an important role in modern engineering problems like artificial intelligence, biomedicine, machine learning, etc. The present paper proposes new algorithms to solve linear problems involving finite matrices as well as operators in infinite dimensions. It is well known that the power m...

Full description

Saved in:
Bibliographic Details
Main Author: María A. Navascués
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/18/7/439
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Matrices have an important role in modern engineering problems like artificial intelligence, biomedicine, machine learning, etc. The present paper proposes new algorithms to solve linear problems involving finite matrices as well as operators in infinite dimensions. It is well known that the power method to find an eigenvalue and an eigenvector of a matrix requires the existence of a dominant eigenvalue. This article proposes an iterative method to find eigenvalues of matrices without a dominant eigenvalue. This algorithm is based on a procedure involving averages of the mapping and the independent variable. The second contribution is the computation of an eigenvector associated with a known eigenvalue of linear operators or matrices. Then, a novel numerical method for solving a linear system of equations is studied. The algorithm is especially suitable for cases where the iteration matrix has a norm equal to one or the standard iterative method based on fixed point approximation converges very slowly. These procedures are applied to the resolution of Fredholm integral equations of the first kind with an arbitrary kernel by means of orthogonal polynomials, and in a particular case where the kernel is separable. Regarding the latter case, this paper studies the properties of the associated Fredholm operator.
ISSN:1999-4893