Design, synthesis and characterization of a new series of 2,3-dihydroquinazolin-4(1H)-one (DHQZ-1) derivatives and evaluation of antitumor resistant (by Molecule Docking)

The objective of this work is to use multicomponent reactions (MCRs) to produce a novel series of quinazoline derivatives with high yield. This occurs in one-pot condensation among Pyridine-3-carbaldehyde with 1H-3,1-benzoxazine-2,4-dione (Isatoic anhydride) and primary amines (3-7). The mixture re...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed Abed Kadhim, Emad Khelil Mohammed Zangana, Arkan Hassan Jawad
Format: Article
Language:English
Published: University of Baghdad, College of Science for Women 2024-07-01
Series:مجلة بغداد للعلوم
Subjects:
Online Access:https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8232
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this work is to use multicomponent reactions (MCRs) to produce a novel series of quinazoline derivatives with high yield. This occurs in one-pot condensation among Pyridine-3-carbaldehyde with 1H-3,1-benzoxazine-2,4-dione (Isatoic anhydride) and primary amines (3-7). The mixture refluxed into tetrahydrofuran (THF, aprotic solvent). It is carried out with sodium hydrogen sulfate (NaHSO4) that is catalytically present, to afford a high yield of the 2,3-dihydroquinazolin-4(1H)-one derivative. The best yield has been obtained at 68°C. In general, all the products in the series (8-12) show a great ability as potent anticancer of the breast using a molecular docking study of the derivatives, point towards compound 11, it shows the greatest investigated as an anticancer of the breast activity than the other prepared compounds. The evaluation of molecular docking studies of derivatives is carried out via using Auto Dock 4.2 drug design software (PDB, protein code 1M17).
ISSN:2078-8665
2411-7986