Environmental Sensitivity in AI Tree Bark Detection: Identifying Key Factors for Improving Classification Accuracy

Accurate tree species identification through bark characteristics is essential for effective forest management, but traditionally requires extensive expertise. This study leverages artificial intelligence (AI), specifically the EfficientNet-B3 convolutional neural network, to enhance AI-based tree b...

Full description

Saved in:
Bibliographic Details
Main Authors: Charles Warner, Fanyou Wu, Rado Gazo, Bedrich Benes, Songlin Fei
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/18/7/417
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate tree species identification through bark characteristics is essential for effective forest management, but traditionally requires extensive expertise. This study leverages artificial intelligence (AI), specifically the EfficientNet-B3 convolutional neural network, to enhance AI-based tree bark identification, focusing on northern red oak (<i>Quercus rubra</i>), hackberry (<i>Celtis occidentalis</i>), and bitternut hickory (<i>Carya cordiformis</i>) using the CentralBark dataset. We investigated three environmental variables—time of day (lighting conditions), bark moisture content (wet or dry), and cardinal direction of observation—to identify sources of classification inaccuracies. Results revealed that bark moisture significantly reduced accuracy by 8.19% in wet conditions (89.32% dry vs. 81.13% wet). In comparison, the time of day had a significant impact on hackberry (95.56% evening) and northern red oak (80.80% afternoon), with notable chi-squared associations (<i>p</i> < 0.05). Cardinal direction had minimal effect (4.72% variation). Bitternut hickory detection consistently underperformed (26.76%), highlighting morphological challenges. These findings underscore the need for targeted dataset augmentation with wet and afternoon images, alongside preprocessing techniques like illumination normalization, to improve model robustness. Enhanced AI tools will streamline forest inventories, support biodiversity monitoring, and bolster conservation in dynamic forest ecosystems.
ISSN:1999-4893