A Novel Approach Utilizing Bagging, Histogram Gradient Boosting, and Advanced Feature Selection for Predicting the Onset of Cardiovascular Diseases

Cardiovascular diseases (CVDs) rank among the leading global causes of mortality, underscoring the necessity for early detection and effective management. This research presents a novel prediction model for CVDs utilizing a bagging algorithm that incorporates histogram gradient boosting as the estim...

Full description

Saved in:
Bibliographic Details
Main Authors: Norma Latif Fitriyani, Muhammad Syafrudin, Nur Chamidah, Marisa Rifada, Hendri Susilo, Dursun Aydin, Syifa Latif Qolbiyani, Seung Won Lee
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/13/2194
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cardiovascular diseases (CVDs) rank among the leading global causes of mortality, underscoring the necessity for early detection and effective management. This research presents a novel prediction model for CVDs utilizing a bagging algorithm that incorporates histogram gradient boosting as the estimator. This study leverages three preprocessed cardiovascular datasets, employing the Local Outlier Factor technique for outlier removal and the information gain method for feature selection. Through rigorous experimentation, the proposed model demonstrates superior performance compared to conventional machine learning approaches, such as Logistic Regression, Support Vector Classification, Gaussian Naïve Bayes, Multi-Layer Perceptron, k-nearest neighbors, Random Forest, AdaBoost, gradient boosting, and histogram gradient boosting. Evaluation metrics, including precision, recall, F1 score, accuracy, and AUC, yielded impressive results: 93.90%, 98.83%, 96.30%, 96.25%, and 0.9916 for dataset I; 94.17%, 99.05%, 96.54%, 96.48%, and 0.9931 for dataset II; and 89.81%, 82.40%, 85.91%, 86.66%, and 0.9274 for dataset III. The findings indicate that the proposed prediction model has the potential to facilitate early CVD detection, thereby enhancing preventive strategies and improving patient outcomes.
ISSN:2227-7390