Spatiotemporal Evolution and Multi-Driver Dynamics of Sea-Level Changes in the Yellow–Bohai Seas (1993–2023)

This study analyzes sea-level changes in the Yellow and Bohai Seas from 1993 to 2023 based on satellite altimetry data. After reconstructing the gridded sea-level data using local mean decomposition (LMD), the annual mean sea level was estimated at 28.86 mm, with an average rise rate of 2.21 mm per...

Full description

Saved in:
Bibliographic Details
Main Authors: Lujie Xiong, Fengwei Wang, Yanping Jiao, Yunqi Zhou
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/6/1081
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study analyzes sea-level changes in the Yellow and Bohai Seas from 1993 to 2023 based on satellite altimetry data. After reconstructing the gridded sea-level data using local mean decomposition (LMD), the annual mean sea level was estimated at 28.86 mm, with an average rise rate of 2.21 mm per year (mm/a). Temporal and spatial variations were examined through nonlinear least squares fitting to capture interannual variability and decadal amplitude distributions. Empirical orthogonal function (EOF) analysis identified the first three modes, explaining 90.40%, 2.78%, and 1.47% of the total variance, respectively, and their spatial patterns and temporal coefficients were derived. The first mode was strongly correlated with sea surface temperature (SST) and precipitation, showing distinct spatial structures. Temperature and salinity profiles revealed a decadal-scale trend of increasing temperature and decreasing salinity with depth. Seasonal variations of sea-level anomaly (SLA) were evident, with mean values and trends of −11.47 mm (2.19 mm/a) in spring, 57.12 mm (2.29 mm/a) in summer, 75.68 mm (2.24 mm/a) in autumn, and −13.90 mm (2.11 mm/a) in winter. Seasonal correlations among SLA, SST, salinity, and precipitation were assessed, highlighting interannual amplitude variations. This integrated analysis provides a comprehensive understanding of the dynamics and drivers of sea-level fluctuations, offering insights for future research.
ISSN:2077-1312