Spectral optical properties of soot: laboratory investigation of propane flame particles and their link to composition

<p><span id="page6408"/>Soot aerosol generated from the incomplete combustion of biomass and fossil fuels is a major light-absorber; however its spectral optical properties for varying black carbon (BC) and brown carbon (BrC) content remain uncertain. In this study, soot aeroso...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Heuser, C. Di Biagio, J. Yon, M. Cazaunau, A. Bergé, E. Pangui, M. Zanatta, L. Renzi, A. Marinoni, S. Inomata, C. Yu, V. Bernardoni, S. Chevaillier, D. Ferry, P. Laj, M. Maillé, D. Massabò, F. Mazzei, G. Noyalet, H. Tanimoto, B. Temime-Roussel, R. Vecchi, V. Vernocchi, P. Formenti, B. Picquet-Varrault, J.-F. Doussin
Format: Article
Language:English
Published: Copernicus Publications 2025-06-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/6407/2025/acp-25-6407-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839650222067679232
author J. Heuser
C. Di Biagio
J. Yon
M. Cazaunau
A. Bergé
A. Bergé
E. Pangui
M. Zanatta
M. Zanatta
L. Renzi
A. Marinoni
S. Inomata
C. Yu
V. Bernardoni
S. Chevaillier
D. Ferry
P. Laj
P. Laj
M. Maillé
D. Massabò
D. Massabò
F. Mazzei
F. Mazzei
G. Noyalet
H. Tanimoto
B. Temime-Roussel
R. Vecchi
V. Vernocchi
P. Formenti
B. Picquet-Varrault
J.-F. Doussin
author_facet J. Heuser
C. Di Biagio
J. Yon
M. Cazaunau
A. Bergé
A. Bergé
E. Pangui
M. Zanatta
M. Zanatta
L. Renzi
A. Marinoni
S. Inomata
C. Yu
V. Bernardoni
S. Chevaillier
D. Ferry
P. Laj
P. Laj
M. Maillé
D. Massabò
D. Massabò
F. Mazzei
F. Mazzei
G. Noyalet
H. Tanimoto
B. Temime-Roussel
R. Vecchi
V. Vernocchi
P. Formenti
B. Picquet-Varrault
J.-F. Doussin
author_sort J. Heuser
collection DOAJ
description <p><span id="page6408"/>Soot aerosol generated from the incomplete combustion of biomass and fossil fuels is a major light-absorber; however its spectral optical properties for varying black carbon (BC) and brown carbon (BrC) content remain uncertain. In this study, soot aerosols with varying maturity and composition, i.e. elemental-to-total-carbon ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a434d3ed47844dbe9a7417ac781bab9e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00001.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00001.png"/></svg:svg></span></span>), have been studied systematically in a large simulation chamber to determine their mass absorption, scattering, and extinction cross sections (MAC, MSC, MEC); single-scattering albedo (SSA); and absorption and scattering Ångström exponents (AAE, SAE). The MAC, MEC, SSA, and AAE show a variability between the different types of soot with varying <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d98c3dd06629c9ce353405ed57451d0d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00002.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00002.png"/></svg:svg></span></span> ratios. The MAC (MEC) at 550 nm increases for increasing <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7c7ca3abf63eb567996671d1b7f250c0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00003.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00003.png"/></svg:svg></span></span>, with values of 1.0 (1.4) m<span class="inline-formula"><sup>2</sup></span> g<span class="inline-formula"><sup>−1</sup></span> for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="54ffed50687805c6f186d5877b6bdd3b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00004.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00004.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.0 (BrC-dominated soot) and 4.6 (5.1) m<span class="inline-formula"><sup>2</sup></span> g<span class="inline-formula"><sup>−1</sup></span> for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="16b788defa5a132fb643f6a1bb090717"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00005.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00005.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.79 (BC-dominated soot). The AAE and SSA (550 nm) decrease from 3.79 and 0.29 (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0f8b86a481edcacac1ef37cd868a5b8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00006.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00006.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.0) to 1.27 and 0.10 (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1c460d6c2eab28f7193cb4f3294a7110"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00007.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00007.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.79). Combining present results for soot from propane combustion with literature data for flame soot from diverse fuels supports a generalised exponential relationship between particle <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="e5fb6256d98cd87c1d78541e399c7371"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00008.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00008.png"/></svg:svg></span></span> and its MAC and AAE values <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><msub><mi mathvariant="normal">MAC</mi><mn mathvariant="normal">550</mn></msub><mo>=</mo><mo>(</mo><mn mathvariant="normal">1.3</mn><mo>±</mo><mn mathvariant="normal">0.05</mn><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="111pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="cdb2fc036bea96fec148c35e0bf563a1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00009.svg" width="111pt" height="13pt" src="acp-25-6407-2025-ie00009.png"/></svg:svg></span></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>e</mi><mrow><mo>(</mo><mn mathvariant="normal">1.8</mn><mo>±</mo><mn mathvariant="normal">0.1</mn><mo>)</mo><mfenced open="(" close=")"><mfrac><mi mathvariant="normal">EC</mi><mi mathvariant="normal">TC</mi></mfrac></mfenced></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="60pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a6a8d7c905cd62cf94a92612e92feafb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00010.svg" width="60pt" height="15pt" src="acp-25-6407-2025-ie00010.png"/></svg:svg></span></span>; <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">AAE</mi><mo>=</mo><mo>(</mo><mn mathvariant="normal">0.73</mn><mo>±</mo><mn mathvariant="normal">0.12</mn><mo>)</mo><mo>+</mo><mo>(</mo><mn mathvariant="normal">3.29</mn><mo>±</mo><mn mathvariant="normal">0.12</mn><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="170pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="d4034e21b8206d1c809b37bf1ce1fe19"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00011.svg" width="170pt" height="12pt" src="acp-25-6407-2025-ie00011.png"/></svg:svg></span></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>e</mi><mrow><mo>-</mo><mo>(</mo><mn mathvariant="normal">2.32</mn><mo>±</mo><mn mathvariant="normal">0.30</mn><mo>)</mo><mfenced open="(" close=")"><mfrac><mi mathvariant="normal">EC</mi><mi mathvariant="normal">TC</mi></mfrac></mfenced></mrow></msup><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="78pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4366cdc51fd2f29d7953dfc106a43db3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00012.svg" width="78pt" height="17pt" src="acp-25-6407-2025-ie00012.png"/></svg:svg></span></span>, which represents the optical continuum of spectral absorption for soot with varying maturity. From this, it is possible to extrapolate a MAC of 7.9 and 1.3 m<span class="inline-formula"><sup>2</sup></span> g<span class="inline-formula"><sup>−1</sup></span> (550 nm) and an AAE (375–870 nm) of 1.05 and 4.02 for pure EC (BC-like) and pure OC (BrC-like) soot. The established relationship can provide a useful parameterisation for models to estimate the absorption from combustion aerosols and their BC and BrC contributions.</p>
format Article
id doaj-art-d4b6574f194b4ed9b9ead2d41c8c6b49
institution Matheson Library
issn 1680-7316
1680-7324
language English
publishDate 2025-06-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-d4b6574f194b4ed9b9ead2d41c8c6b492025-06-27T06:20:38ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-06-01256407642810.5194/acp-25-6407-2025Spectral optical properties of soot: laboratory investigation of propane flame particles and their link to compositionJ. Heuser0C. Di Biagio1J. Yon2M. Cazaunau3A. Bergé4A. Bergé5E. Pangui6M. Zanatta7M. Zanatta8L. Renzi9A. Marinoni10S. Inomata11C. Yu12V. Bernardoni13S. Chevaillier14D. Ferry15P. Laj16P. Laj17M. Maillé18D. Massabò19D. Massabò20F. Mazzei21F. Mazzei22G. Noyalet23H. Tanimoto24B. Temime-Roussel25R. Vecchi26V. Vernocchi27P. Formenti28B. Picquet-Varrault29J.-F. Doussin30Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, FranceUniversité Paris Cité and Univ Paris Est Creteil, CNRS, LISA, 75013 Paris, FranceINSA Rouen Normandie, Univ. Rouen Normandie, CNRS, Normandie Univ., CORIA UMR 6614, 76000 Rouen, FranceUniv Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, FranceUniversité Paris Cité and Univ Paris Est Creteil, CNRS, LISA, 75013 Paris, Francenow at: Laboratoire des Sciences du Climat et de l'Environnement, CEA–CNRS–UVSQ, IPSL, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceUniv Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, FranceUniv Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, FranceInstitute of Atmospheric Sciences and Climate, National Research Council of Italy, Bologna, ItalyInstitute of Atmospheric Sciences and Climate, National Research Council of Italy, Bologna, ItalyInstitute of Atmospheric Sciences and Climate, National Research Council of Italy, Bologna, ItalyEarth System Division, National Institute for Environmental Studies, Tsukuba, JapanUniversité Paris Cité and Univ Paris Est Creteil, CNRS, LISA, 75013 Paris, FranceDepartment of Physics, Università degli Studi di Milano and National Institute of Nuclear Physics INFN-Milan, Milan, 20133, ItalyUniv Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, FranceAix Marseille Univ., CNRS, CINaM, Marseille, FranceUniv. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, IGE, 38000 Grenoble, Francenow at: World Meteorological Organization, Geneva, SwitzerlandUniv Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, FranceDepartment of Physics, University of Genoa, Via Dodecaneso 33, 16146, Genoa, ItalyNational Institute of Nuclear Physics, INFN-Genoa, via Dodecaneso 33, 16146, Genoa, ItalyDepartment of Physics, University of Genoa, Via Dodecaneso 33, 16146, Genoa, ItalyNational Institute of Nuclear Physics, INFN-Genoa, via Dodecaneso 33, 16146, Genoa, ItalyUniversité Paris Cité and Univ Paris Est Creteil, CNRS, LISA, 75013 Paris, FranceEarth System Division, National Institute for Environmental Studies, Tsukuba, JapanAix Marseille Univ., CNRS, LCE, Marseille, FranceDepartment of Physics, Università degli Studi di Milano and National Institute of Nuclear Physics INFN-Milan, Milan, 20133, ItalyNational Institute of Nuclear Physics, INFN-Genoa, via Dodecaneso 33, 16146, Genoa, ItalyUniversité Paris Cité and Univ Paris Est Creteil, CNRS, LISA, 75013 Paris, FranceUniv Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, FranceUniv Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France<p><span id="page6408"/>Soot aerosol generated from the incomplete combustion of biomass and fossil fuels is a major light-absorber; however its spectral optical properties for varying black carbon (BC) and brown carbon (BrC) content remain uncertain. In this study, soot aerosols with varying maturity and composition, i.e. elemental-to-total-carbon ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a434d3ed47844dbe9a7417ac781bab9e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00001.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00001.png"/></svg:svg></span></span>), have been studied systematically in a large simulation chamber to determine their mass absorption, scattering, and extinction cross sections (MAC, MSC, MEC); single-scattering albedo (SSA); and absorption and scattering Ångström exponents (AAE, SAE). The MAC, MEC, SSA, and AAE show a variability between the different types of soot with varying <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d98c3dd06629c9ce353405ed57451d0d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00002.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00002.png"/></svg:svg></span></span> ratios. The MAC (MEC) at 550 nm increases for increasing <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7c7ca3abf63eb567996671d1b7f250c0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00003.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00003.png"/></svg:svg></span></span>, with values of 1.0 (1.4) m<span class="inline-formula"><sup>2</sup></span> g<span class="inline-formula"><sup>−1</sup></span> for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="54ffed50687805c6f186d5877b6bdd3b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00004.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00004.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.0 (BrC-dominated soot) and 4.6 (5.1) m<span class="inline-formula"><sup>2</sup></span> g<span class="inline-formula"><sup>−1</sup></span> for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="16b788defa5a132fb643f6a1bb090717"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00005.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00005.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.79 (BC-dominated soot). The AAE and SSA (550 nm) decrease from 3.79 and 0.29 (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0f8b86a481edcacac1ef37cd868a5b8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00006.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00006.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.0) to 1.27 and 0.10 (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1c460d6c2eab28f7193cb4f3294a7110"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00007.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00007.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.79). Combining present results for soot from propane combustion with literature data for flame soot from diverse fuels supports a generalised exponential relationship between particle <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">EC</mi><mo>/</mo><mi mathvariant="normal">TC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="e5fb6256d98cd87c1d78541e399c7371"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00008.svg" width="38pt" height="14pt" src="acp-25-6407-2025-ie00008.png"/></svg:svg></span></span> and its MAC and AAE values <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><msub><mi mathvariant="normal">MAC</mi><mn mathvariant="normal">550</mn></msub><mo>=</mo><mo>(</mo><mn mathvariant="normal">1.3</mn><mo>±</mo><mn mathvariant="normal">0.05</mn><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="111pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="cdb2fc036bea96fec148c35e0bf563a1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00009.svg" width="111pt" height="13pt" src="acp-25-6407-2025-ie00009.png"/></svg:svg></span></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>e</mi><mrow><mo>(</mo><mn mathvariant="normal">1.8</mn><mo>±</mo><mn mathvariant="normal">0.1</mn><mo>)</mo><mfenced open="(" close=")"><mfrac><mi mathvariant="normal">EC</mi><mi mathvariant="normal">TC</mi></mfrac></mfenced></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="60pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a6a8d7c905cd62cf94a92612e92feafb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00010.svg" width="60pt" height="15pt" src="acp-25-6407-2025-ie00010.png"/></svg:svg></span></span>; <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">AAE</mi><mo>=</mo><mo>(</mo><mn mathvariant="normal">0.73</mn><mo>±</mo><mn mathvariant="normal">0.12</mn><mo>)</mo><mo>+</mo><mo>(</mo><mn mathvariant="normal">3.29</mn><mo>±</mo><mn mathvariant="normal">0.12</mn><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="170pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="d4034e21b8206d1c809b37bf1ce1fe19"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00011.svg" width="170pt" height="12pt" src="acp-25-6407-2025-ie00011.png"/></svg:svg></span></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>e</mi><mrow><mo>-</mo><mo>(</mo><mn mathvariant="normal">2.32</mn><mo>±</mo><mn mathvariant="normal">0.30</mn><mo>)</mo><mfenced open="(" close=")"><mfrac><mi mathvariant="normal">EC</mi><mi mathvariant="normal">TC</mi></mfrac></mfenced></mrow></msup><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="78pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4366cdc51fd2f29d7953dfc106a43db3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6407-2025-ie00012.svg" width="78pt" height="17pt" src="acp-25-6407-2025-ie00012.png"/></svg:svg></span></span>, which represents the optical continuum of spectral absorption for soot with varying maturity. From this, it is possible to extrapolate a MAC of 7.9 and 1.3 m<span class="inline-formula"><sup>2</sup></span> g<span class="inline-formula"><sup>−1</sup></span> (550 nm) and an AAE (375–870 nm) of 1.05 and 4.02 for pure EC (BC-like) and pure OC (BrC-like) soot. The established relationship can provide a useful parameterisation for models to estimate the absorption from combustion aerosols and their BC and BrC contributions.</p>https://acp.copernicus.org/articles/25/6407/2025/acp-25-6407-2025.pdf
spellingShingle J. Heuser
C. Di Biagio
J. Yon
M. Cazaunau
A. Bergé
A. Bergé
E. Pangui
M. Zanatta
M. Zanatta
L. Renzi
A. Marinoni
S. Inomata
C. Yu
V. Bernardoni
S. Chevaillier
D. Ferry
P. Laj
P. Laj
M. Maillé
D. Massabò
D. Massabò
F. Mazzei
F. Mazzei
G. Noyalet
H. Tanimoto
B. Temime-Roussel
R. Vecchi
V. Vernocchi
P. Formenti
B. Picquet-Varrault
J.-F. Doussin
Spectral optical properties of soot: laboratory investigation of propane flame particles and their link to composition
Atmospheric Chemistry and Physics
title Spectral optical properties of soot: laboratory investigation of propane flame particles and their link to composition
title_full Spectral optical properties of soot: laboratory investigation of propane flame particles and their link to composition
title_fullStr Spectral optical properties of soot: laboratory investigation of propane flame particles and their link to composition
title_full_unstemmed Spectral optical properties of soot: laboratory investigation of propane flame particles and their link to composition
title_short Spectral optical properties of soot: laboratory investigation of propane flame particles and their link to composition
title_sort spectral optical properties of soot laboratory investigation of propane flame particles and their link to composition
url https://acp.copernicus.org/articles/25/6407/2025/acp-25-6407-2025.pdf
work_keys_str_mv AT jheuser spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT cdibiagio spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT jyon spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT mcazaunau spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT aberge spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT aberge spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT epangui spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT mzanatta spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT mzanatta spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT lrenzi spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT amarinoni spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT sinomata spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT cyu spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT vbernardoni spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT schevaillier spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT dferry spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT plaj spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT plaj spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT mmaille spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT dmassabo spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT dmassabo spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT fmazzei spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT fmazzei spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT gnoyalet spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT htanimoto spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT btemimeroussel spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT rvecchi spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT vvernocchi spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT pformenti spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT bpicquetvarrault spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition
AT jfdoussin spectralopticalpropertiesofsootlaboratoryinvestigationofpropaneflameparticlesandtheirlinktocomposition