Advanced Numerical Scheme for Solving Nonlinear Fractional Kuramoto–Sivashinsky Equations Using Caputo Operators

This work reveals an advanced numerical scheme for obtaining approximate solutions to nonlinear fractional Kuramoto–Sivashinsky (K-S) equations involving Caputo derivatives. We introduce the Sumudu transform (ST), which converts the fractional derivatives into their classical counterparts to produce...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Nadeem, Loredana Florentina Iambor
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/7/418
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work reveals an advanced numerical scheme for obtaining approximate solutions to nonlinear fractional Kuramoto–Sivashinsky (K-S) equations involving Caputo derivatives. We introduce the Sumudu transform (ST), which converts the fractional derivatives into their classical counterparts to produce a nonlinear recurrence equation. By using the homotopy perturbation method (HPM), we construct a homotopy with an embedding parameter to solve this recurrence relation. Our proposed technique is known as the Sumudu homotopy transform method (SHTM), which delivers results after fewer iterations and achieves precise outcomes with minimal computational effort. The proposed technique effectively eliminates the necessity for complex discretization or linearization, making it highly suitable for nonlinear problems. We showcase two numerical cases, along with two- and three-dimensional visualizations, to validate the accuracy and effectiveness of this technique. It also produces rapidly converging series solutions that closely align with the precise results.
ISSN:2504-3110